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PROBLEM
Setup
We are given a sequence

x := X1, . . . , Xn ∈ Rn, n ∈ N
which is formed as the concatenation of an unknown number k + 1 of sequences

X1, . . . , Xπ1� �� �
∼ρ

, Xπ1+1, . . . , Xπ2� �� �
∼ρ�

, Xπ2+1, . . . , Xπ3� �� �
∼ρ

, . . . , Xπk+1, . . . , Xn� �� �
∼ρ��

• Each sequence is generated by an unknown discrete-
time stochastic process.

• The consecutive segments separated by πi, i = 1..k
are generated by different processes.

• The indices πi, i = 1..k are called change-points and
are unknown.

• The segments have lengths linear in n i.e.,

πi := nθi, i = 1..k, θi ∈ (0, 1)

λmin := min
i=1..k+1

θ0:=0, θk+1:=1

θi − θi−1 > 0

where θi, i = 1..k and λmin are unknown.

Our goal is to estimate every change-point consistently.

Objective
We seek an asymptotically consistent estimate θ̂i(n) for every θi, i = 1..k so that with
probability one we have

lim
n→∞

|θ̂i(n)− θi| = 0.

MAIN RESULT

Theorem (The proposed algorithm is asymptotically consistent).
Let x := X1, . . . , Xn, n ∈ N be a sequence with an unknown number k of change-points, πi := nθi, i = 1..k and assume that the process
distributions that generate x are stationary ergodic. The proposed algorithm takes the sequence x along with a parameter λ ∈ (0, 1) to produce a
list θ̂1(n), . . . , θ̂1/λ(n) of estimates. For all λ ∈ (0,λmin], the first k elements of the produced list converge to some permutation of θ1, . . . , θk so
that with probability one we have

lim
n→∞

sup
i=1..k

|θ̂[i](n)− θi| = 0.

ASSUMPTIONS

We consider an extremely general nonparametric framework.

• We allow the samples to be dependent and the dependence can
be arbitrary.

• Our only assumption on the unknown distributions that gener-
ate the data is that they are stationary ergodic.
⇒ We make no such assumptions as iid, Markov etc.

• We do not require the finite-dimensional marginals of any fixed
size to be different.

We consider the most general case: the process distributions change.

This framework is similar to that of [1] where the single change-point
problem was considered. It turns out that extensions to the multiple
change-point problem is non-trivial.

Remark
The assumption that the process-distributions are stationary ergodic is
one of the weakest assumptions in statistics. Typically in the change-
point literature the samples are assumed iid within segments, the dis-
tributions have known forms and the change is in the mean. In non-
parametric settings the form of the change and/or the nature of de-
pendence are usually restricted. For example the processes are assumed to
be strongly mixing. Moreover, it is almost exclusively assumed that the
finite-dimensional marginals are different.

NUMBER OF CHANGE-POINTS
An Impossibility Theorem [2]: For a pair of sequences generated
by stationary ergodic processes, it is impossible to distinguish between the
case where they are generated by the same process or by different ones.

It is therefore impossible to estimate k in this setting.

With the number k of change-points unknown, we have two choices
→ ————————————-Make stronger assumptions
→ Produce a sorted list of change points whose first k elements con-
verge to some permutation of the true change points.
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DISTANCE MEASURE

We measure the distance between two sequences y ∈ Rn and z ∈ Rn�
as

d̂(y, z) :=
∞�

m,l=1

wmwl

�

B∈Bm,l

|ν(y, B)− ν(z, B)|

where Bm,l m, l ∈ N is the set of all hypercubes of dimension m and
edge-length 2−l and ν(x, B) is the frequency with which x crosses B;
and wi := 2−i. As shown in [4] that if y and z are generated by station-
ary ergodic processes ρ and ρ�, then d̂(y, z) converges to the so-called
distributional-distance [3] given by

d(ρ, ρ�) :=
∞�

m,l=1

wmwl

�

B∈Bm,l

|ρ(B)− ρ�(B)|.



ALGORITHM
input: x := X1, . . . , Xn, λ ∈ (0,λmin]

1. Set interval size α ← λ/3 and generate two sets of separators

bti ← nα(i+
1

t+ 1
), i = 0..

1

α
, t = 1, 2

X1 . . .
b1
0
↓ X1 ← αn → X1

b1
1
↓ X1 ← αn → X1

b1
2
↓ X1 ← αn → X1

↓. . .
...

X1

b2
0
↓ X1 ← αn → X1

b2
1
↓ X1 ← αn → X1

b2
2
↓ X1 ← αn → X1

↓. . .
...

where b10 := nα/2, b20 := nα/3

2. Estimate a change-point θ̂ti in every segment as

θ̂ti :=
1

n
argmax
t�∈bti..bti+1

d̂(Xbti−1..t
� , Xt�..bti+2

)

3. Calculate a performance score for every estimate θ̂ti as

∆x(b
t
i, b

t
i+1) := d̂(Xbti..c

t
i
, Xcti..b

t
i+1

)

where cti :=
bti + bti+1

2

4. Start from the set of all estimates

Do (While estimates are still available)

i. Add to the output list an available estimate θ̂ of highest score

ii. Remove all estimates within λ/2 from θ̂

output: A (sorted) list of change-point estimates.

EXPERIMENTAL RESULTS
Time-Series Generation

1. Fix some parameter α ∈ (0, 1), and select some length n ∈ N.

2. Select r0 ∈ [0, 1] at random.

3. For each i = 1..n obtain ri := ri−1 + α− �ri−1 + α�.

4. Let Xi := I{ri > 0.5} to generate x = X1, · · · , Xn.

If α is irrational then x forms a stationary-ergodic time-series which

does not belong to any “simpler” class. In particular, it cannot be

modeled by a hidden Markov process with a finite state-space [5]. We

simulate α by a longdouble with a long mantissa.

In our experiments we fixed λmin = 0.23 and generated a sequence

with k = 3 change-points using α1 := 0.30..., α2 := 0.35...,α3 :=
0.40...,α4 := 0.45... (with long mantissae).
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Figure 1: Error as a function of the sequence-length (avg. over 20 runs).

Dependance on λ

       






















 







Figure 2: Error as a function of λ (avg. over 25 runs). The sequence-

length is fixed to 20000, λmin := 0.23 and λ is varied.

COMPUTATIONAL COMPLEXITY

The computational complexity of the algorithm is O(n2 polylog n)

Even though the distance d̂(·, ·) involves infinite summations it can be

calculated efficiently.

• All summands corresponding to m > n equal 0.

• All summands corresponding to l > smin are equal where

smin := min
i,j∈1..n, Xi �=Xj

|Xi −Xj |

corresponds to the partition in which each cell contains at most one

point. On the other hand, the frequencies of cells in Bm,l corresponding

to higher values of m are not consistent estimates of their probabilities.

Thus we may take m upto log n and still obtain consistent results; see

also [4] and [6]. Therefore, the computational complexity of calculating

the distance becomes n polylog n and that of the algorithm n2 polylog n.

PROOF SKETCH
• Since α ∈ (0,λmin/3] if a change-point πj := nθj for some j ∈ 1..k

is contained within a segment Xbti..b
t
i+1

for some i ∈ 1..α−1 (i.e. πj ∈

[bti, b
t
i+1]) then we have [πj−1,πj+1] ⊆ [bti−1, b

t
i+2].

. . . Xbti−1..b
t
i

↓Xbti..πj� �� �
∼ρ

Xπj ..bti+1

↓Xbti+1..b
t
i+2� �� �

∼ρ�

. . .

In this case (by the consistency of d̂(·, ·)) we can show that θti is a

consistent estimate of θj i.e. θ̂ti → θj, and is further assigned a score

that converges to a non-zero constant i.e. ∆x(bt
i ,b

t
i+1) → δ > 0.

• If Xbti..b
t
i+1

does not contain any change-points then its performance

score converges to 0, i.e. ∆x(bt
i ,b

t
i+1) → 0.

. . .. . . Xbi
↓Xbi+1 . . . Xbi+1

↓Xbi+1+1 . . .� �� �
∼ρ

.

• Every change-point is (consistently) estimated at least once.

↓. . .
...
↓ ← αn →

∆x→0

πj

↓
← αn →

∆x→0

↓ ← αn →

∆x→0

↓ ← αn → ↓. . .
...

↓. . .
...
↓ ← αn →

∆x→0

↓ ← αn →

|θ̂−θj |→0
∆x→δ>0

↓ ← αn →

∆x→0

↓ ← αn → ↓. . .
...

• Since λ ∈ (0,λmin] the estimate of every true change-point appears at

most once in the output.

Therefore,

� The algorithm provides a list of change-point estimates.

� The estimates are sorted according to their performance scores.

� The first k estimates converge to some permutation of the true

change-points.
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