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EXPERIMENTAL RESULTS
1. Synthetic Data

PROBLEM

Class Labels (never visible to the learner)

Setup: We have a growing body of sequences of

data. Each sequence is generated by on of k un- 0 XLX3, XL BRI Setup: We generated a data matrix X, where each
known discrete-time stochastic process. The num- O, X5 X5, Xio X o Xne t] | TOW @ sequence gener ated by one of the five pro-
ber k£ of distributions is known. ©) XE X3, X C X X cesses, k = 5.

Data are observed in an online fashion: 0 L~ 1 Batch Simulation: Data revealed via a rectangu-
— New samples arrive at every time-step; X7, X lar window extended over X.

they either are continuations of previously O K] Onlipe Simulation: Data revealed via a triangu-
received sequences or a new sequences.  Goal: Cluster the sequences at every time-step. lar window extended over X.

Remark: We use processes that, while being stationary-

CONSISTENCY

In general it is hard to give a precise definition for
“correct clustering”.

But, a natural notion for correct clustering exists
in the considered setting:

Sequences generated by the same process
distribution should be grouped together.

Asymptotic Consistency: A clustering algorithm is
(asymptotically) consistent if, with probability 1,
for each N € N from some time on, it clusters the first
N observed sequences are clustered correctly.
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ASSUMPTIONS ON DATA

e Data revealed in an arbitrary fashion.

e Our only assumption is that the distributions
generating the data are stationary-ergodic.

— The samples are allowed to be dependent and
the dependence can be arbitrary, or even adver-
sarial. No such assumptions as iid, Markov etc.
Remark: In time-series literature, it is typically as-
sumed that the distributions generating the data have
a known form, ex. Gaussian, HMMs etc., and the sam-
ples are independent.

DISTANCE MEASURE

We measure the distance between two sequences
x1 € R™ and x, € R™2 as

o

d(x1,%2) ==y 27"FIN" |y(x1, B) — v(x2, B)|

m,l=1 BeBm,l

where B™" m,l € N is the set of all hypercubes of di-
mension m and edge-length 27" and v(x, B) is the fre-
quency with which x crosses B.

Theorem: (d(-, -) is consistent) [1]
If x; and x5 are generated by stationary-ergodic

processes p; and ps, then d(xi,x2) converges to
the so-called distributional-distance:

d(pr,p2):= ) 27" |pi(B) = p2(B)

m,l=1 BeBm,l
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MAIN THEORETICAL RESULT

Theorem: There exists an online clustering algo-
rithm that is asymptotically consistent provided that
the distributions generating the data are stationary
and ergodic.

PROPOSED ALGORITHM

Key Idea:

Combine Batch Clusterings with Weights!

Algorithm
1. For j = k..N(t), use a (consistent) batch al-

gorithm on xi,...,x} to obtain k cluster centers:
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2. Calculate two sets of weights:

L 7 = z;églelrll kd(cg,cg,) i. w; = j77 the
the min  inter- chronological
cluster distance. weight.

3. Assign points to clusters: For every sequence
x, choose the index 7 € 1..k, s.t. - minimizes,

N
= Z w,;v,;d(x,c;)
=

where, n 1= Zjv :(’15) w;7; 1s the normalization factor.

IDEA OF THE PROOF

1. The distance d(-, -) is consistent:

— The performance 17y
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2. The batch algorithm is consistent [1]:

— Once samples from all k clusters are observed,

from some time on, the cluster-centers c,...,c,

are consistently chosen to each, uniquely repre-
sent one of the £ distributions.

3. Algorithm is not confused by “bad" points:
Sets of sequences xi,...,x} for larger j contain
potential “bad” points: newly formed sequences,
with inaccurate distance estimates. Decisions
based on earlier sequences are more reliable.

— The chronological weight w,; gives precedence

to cluster-centers ¢y, ..., c; produced earlier, i.e.
smaller ;.

ergodic do not belong to any “simpler” class. They
cannot be modeled as a hidden Markov process with a
countable set of states.
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Top: error-rate vs. sequence-length in batch setting
(both algorithms are consistent). Bottom: error-rate vs.
# of samples in online setting (the offline algorithm is
constantly confused by the new sequences).

2. Real Data:
(Clustering Motion Capture Sequences)

Setup: We used time-series data from [2] repre-
senting human locomotion; sequences are marker
positions tracked spatially through time.
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Objective: Cluster the video sequences based on
the activity they represent, ex. Walking, Running,
etc.

We compare against [3] and [4].

Dataset [3] f(-,-)
Walk vs. Run (#35) 0.1015 0
Walk vs.Run (#16) 0.3786 0.2109
Dataset [4] f(-,-)
Ergodic Motions
Run vs. Run/Jog 100%  100%
Walk vs. Run/Jog 95%  100%
Non-ergodic Motions
Jump vs. Jump fwd. 87%  100%

Jump vs. Jump fwd. 66% 60%

Top: Comparison against [3]; (performance measure:
entropy of the true labeling with respect to the pre-
diction) Bottom: Comparison against [4]; (performance
measure: the percentage of correct classification). The
numerical of [3, 4] results are taken directly from their
corresponding articles.; the same sets of sequences,
and means of evaluation are used.




