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ON RESTLESS LINEAR BANDITS

Abstract

A more general formulation of the linear bandit problem is considered to allow for dependencies over time.

Specifically, it is assumed that there exists an unknown Rd-valued stationary φ-mixing sequence of parameters

(θt, t ∈ N) which gives rise to payoffs. This instance of the problem can be viewed as a generalization of both the

classical linear bandits with iid noise, and the finite-armed restless bandits. In light of the well-known computational

hardness of optimal policies for restless bandits, an approximation is proposed whose error is shown to be controlled

by the φ-dependence between consecutive θt. An optimistic algorithm, called LinMix-UCB, is proposed for the

case where θt has an exponential mixing rate. The proposed algorithm is shown to incur a sub-linear regret of

O
(√

dnpolylog(n)
)

with respect to an oracle that always plays a multiple of E θt. The main challenge in this

setting is to ensure that the exploration-exploitation strategy is robust against long-range dependencies. The proposed

method relies on Berbee’s coupling lemma to carefully select near-independent samples and construct confidence

ellipsoids around empirical estimates of Eθt.

I. INTRODUCTION

The problem of sequential decision making in the presence of uncertainty is prevalent in a variety of modern

applications such as online advertisement, recommendation systems, network routing and dynamic pricing. Through

the framework of stochastic bandits one can model this task as a repeated game between a learner and a stochastic

environment: at every time-step, the learner chooses an action from a pre-specified set of actions A and receives a

(random) real-valued payoff. The objective is to maximize the expected cumulative payoff over time. In a stochastic

linear bandit model the payoff Yt received at each time-step t is the inner product between an Rd-valued action

Xt and an unknown parameter vector θ ∈ Rd. That is,

Yt = ⟨θ,Xt⟩+ ηt

with random noise ηt; see e.g. [1], [2], as we well as [3], [4] and references therein. Let us point out that in the

case where the action space A is restricted to a set of standard unit vectors in Rd the problem is reduced to that of

finite-armed bandits. The noise sequence ηt is typically assumed to be independently and identically distributed

(iid). However, this assumption does not usually hold in practice.

In this paper, we consider a more general formulation of the linear bandit problem which allows for dependencies

over time. More specifically, we assume that there exists an unknown Rd-valued stationary sequence of parameters

(θt, t ∈ N) giving rise to the payoffs Yt = ⟨θt, Xt⟩, t ∈ N with the actions Xt taking values in a unit ball

in Rd. As with any bandit problem, the task of balancing the trade-off between exploration and exploitation
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I INTRODUCTION 2

calls for finite-time analysis, which in turn relies on concentration inequalities for empirical averages. For this

reason, we opt for a natural approach in time-series analysis which is to require that the process satisfy a form

of asymptotic independence. More specifically, we assume that (θt, t ∈ N) is φ-mixing so that its sequence of

φ-mixing coefficients φm, m ∈ N defined by

φm := sup
j∈N

sup
U∈σ({θt:t=1,...,j})
V ∈σ({θt:t≥j+m})

|P (V )− P (V |U)|

converges to 0 as m approaches infinity, see, e.g. [5], [6]. Observe that while θt are identically distributed here,

they are not independent.

To compare with the classical formulation, we can write

Yt = ⟨θ∗, Xt⟩+ ηt

where θ∗ := Eθt is the (unknown) stationary mean of θt and

ηt := ⟨θt − θ∗, Xt⟩

is the noise process, which is clearly non-iid. This instance of the problem can be viewed as a generalization of

the classical linear bandit problem with iid ηt [2] and the finite-armed restless Markovian and φ-mixing bandits

considered in [7] and [8] respectively. Observe that in much the same way as with the examples given in [7, Section

3], a strategy that leverages temporal dependencies can accumulate a higher expected payoff than that which can

be obtained by playing a fixed action in A that is most aligned with θ∗. In the finite-armed restless bandit problem,

this is called the optimal switching strategy whose exact computation in certain related instances of the problem is

known to be intractable [9]. In [10], an algorithm is proposed for finite-armed restless bandits in the case where

the payoff distributions follow an AR model. An approximation of the optimal switching strategy for finite-armed

restless φ-mixing bandits is provided in [8].

We build upon [8] to approximate the optimal restless bandit strategy using the Optimism in the Face of Uncertainty

principal. We show in Proposition 1 that the approximation error of an oracle which always plays a multiple of θ∗,

is controlled by φ1 and the ℓ2 norm of θt, provided that the latter is almost surely bounded. The proof relies on

Vitali’s covering theorem [11] to address the technical challenges presented by the infinite action space A ⊆ Rd.

We propose an algorithm, namely LinMix-UCB, which aims to minimize the regret in the case where the process

(θt, t ∈ N) has an exponential mixing rate. The proposed algorithm is inspired by the UCB-based approach of [2]

which is in turn designed for the simpler setting where the noise ηt is iid. The main challenge in our setting is to

devise an exploration-exploitation strategy that is robust against the dependencies present in the process (θt, t ∈ N).

This problem is similar to the that considered in [8]. However, their setting involves a finite number of arms,

allowing the regret analysis to rely on a Hoeffding-type inequality for φ-mixing processes. This approach does not

carry over to the linear bandit setting considered in the present paper. We rely on Berbee’s coupling lemma [12] to

carefully select near-independent samples and construct confidence ellipsoids around empirical estimates of θ∗.
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III MAIN RESULTS 3

We demonstrate that in the case where that (θt, t ∈ N) has an exponential mixing rate, LinMix-UCB incurs a

sub-linear regret of O
(√

dnpolylog(n)
)

with respect to an oracle which always plays a multiple of θ∗. While

our results are not confined to Markovian processes, we would like to point out that a natural example of a process

with an exponential φ-mixing rate is any stationary ergodic aperiodic Markov chain, see, e.g. [5, Theorem 21.22 -

vol. II pp. 329].

II. PRELIMINARIES AND PROBLEM FORMULATION

Let Θ ⊆ Rd for some d ∈ N. Suppose that θ := (θt, t ∈ N) is a stationary sequence of Θ-valued random variables

defined on a probability space (Ω,B, P ) such that θt, t ∈ N takes values in the space L∞(Ω,B, P ;Rd) equipped

with its Euclidean norm ∥·∥2. This means that

∥θt∥L∞
:= sup

ω∈Ω
∥θt(ω)∥2 <∞.

We may sometimes use L∞ or L∞(Ω;Rd) for L∞(Ω,B, P ;Rd) when the remaining parameters are clear from

the context. Recall that the φ-dependence (see, e.g. [5]) between any pair of σ-subalgebras U and V of B is given

by φ(U ,V) := sup{|P (V )− P (V |U)| : U ∈ U , P (U) > 0, V ∈ V}. This notion gives rise to the sequence of

φ-mixing coefficients φm, m ∈ N of θ where for each m ∈ N

φm := sup
j∈N

φ(σ({θt : 1 ≤ t ≤ j}), σ({θt : t ≥ j +m})).

We further assume that the process θ is φ-mixing so that limm→∞ φm = 0. Let A be the unit ball in Rd, which

we call the action space. The linear bandit problem considered in this paper can be formulated as the following

repeated game. At every time-step t ∈ N, the player chooses an action from A according to a mapping Xt : Ω→ A

and receives as payoff the inner product ⟨θt, Xt⟩ between θt and Xt. The objective is to maximize the expected

sum of the accumulated payoffs. Let Ft, t ≥ 0 be a filtration that tracks the payoffs ⟨θt, Xt⟩ obtained in the past t

rounds, i.e. F0 = {∅,Ω}, and

Ft = σ({⟨θ1, X1⟩, . . . , ⟨θt, Xt⟩})

for t ≥ 1. Each mapping Xt, t ≥ 1 is assumed to be measurable with respect to Ft−1; this is equivalent to stating

that Xt for each t ≥ 1 can be written as a function of the past payoffs up to t− 1. The sequence

π := (Xt, t ∈ N)

is called a policy. Let Π = {π := (X
(π)
t , t ≥ 1) : X

(π)
t is Ft−1-measurable for all t ≥ 1} denote the space of all

possible policies and define

νn = sup
π∈Π

n∑
t=1

E⟨θt, X(π)
t ⟩. (1)

To simplify notation, we may sometimes write Xt for X(π)
t when the policy π is clear from the context.
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III. MAIN RESULTS

Consider the restless linear bandit problem formulated in Section II. Let θ∗ = E θ1 be the (stationary) mean of the

process (θt, t ∈ N). In light of the well-known computational hardness of optimal switching strategies for restless

bandits [9], we aim to approximate νn via the following relaxation

ν̃n = sup
π∈Π

n∑
t=1

E⟨θ∗, X(π)
t ⟩

= n ∥θ∗∥ (2)

since A is the unit ball in Rd. A natural first objective is thus to quantify the error νn − ν̃n incurred by this

approximation. We present the following result which can be considered as a slightly more technical analogue of

[8, Proposition 9].

Proposition 1. Let φ1 be the first φ-mixing coefficient of the process (θt, t ∈ N). For every n ≥ 1 it holds that

νn − ν̃n ≤ 2nφ1 ∥θt∥L∞
.

Proof. Consider an arbitrary policy π = (X
(π)
t , t ∈ N) and any t ∈ N; note that from this point on the notation

Xt will be used to denote X
(π)
t . Let P̃t := P ◦X−1

t be the pushforward measure on the action space A under

Xt. Fix an ϵ > 0. As follows from Vitali’s covering theorem [11, Theorem 2.8] there exists a set of disjoint

closed balls {Bi : i ∈ N} of radii at most ϵ, that covers the action space A (i.e. the unit ball in Rd), such

that P̃t(A \ ∪i∈NBi) = 0. Note that by assumption θt ∈ L∞(Ω;Rd) so that ∥θt∥L∞
:= supω∈Ω ∥θt(ω)∥2 < ∞.

Consider a ball Bi for some i ∈ N and denote its center by x̄i ∈ Rd. Let Ei := {Xt ∈ Bi} denote the pre-image

of Bi under Xt. Since Bi is of radius at most ϵ, it holds that,

E⟨θt, Xt − x̄i⟩IBi
(Xt) ≤ E sup

x∈Bi

⟨θt, x− x̄i⟩IBi
(Xt)

≤
∫
Ei

ϵ ∥θt∥2 dP

= ϵP (Ei) ∥θt∥L∞
. (3)

Similarly, for θ∗ = E θt we have,

E⟨θ∗, Xt − x̄i⟩IBi(Xt) ≤ ϵP (Ei) ∥θt∥L∞
. (4)

Moreover, noting that A is the unit ball in Rd, by Cauchy-Schwarz inequality, for each x ∈ A we have,

∥⟨θt, x⟩∥L∞
= sup

ω∈Ω
|⟨θt(ω), x⟩|

≤ sup
ω∈Ω
∥θt(ω)∥2

= ∥θt∥L∞

<∞. (5)
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Hence, as follows from [5, Theorem 4.4(c2) - vol. I pp. 124] it holds that

∥E(⟨θt, x̄i⟩|Ft−1)− E⟨θt, x̄i⟩∥L∞

∥⟨θt, x̄i⟩∥L∞

≤ sup
Y ∈L∞(Ω,σ(θt),P )

∥E(Y |Ft−1)− EY ∥L∞

∥Y ∥L∞

(6)

= 2φ(Ft−1, σ(θt)) (7)

≤ 2φ1 (8)

where L∞(Ω, σ(θt), P ) denotes the set of all σ(θt)-measurable, real-valued random variables such that supω∈Ω |Y (ω)| <

∞ almost surely. We have,

|E((⟨θt, x̄i⟩ − ⟨θ∗, x̄i⟩)IBi
(Xt))|

= |E (E(⟨θt, x̄i⟩IBi
(Xt)|Ft−1))− E⟨θ∗, x̄i⟩IBi

(Xt)|

= |E (IBi
(Xt)E(⟨θt, x̄i⟩|Ft−1))− E⟨θ∗, x̄i⟩IBi

(Xt)|

≤ E (IBi
(Xt) |E(⟨θt, x̄i⟩|Ft−1)− E⟨θt, x̄i⟩|)

=

∫
Ei

|E(⟨θt, x̄i⟩|Ft−1)− E⟨θt, x̄i⟩| dP

≤
∫
Ei

∥E(⟨θt, x̄i⟩|Ft−1)− E⟨θt, x̄i⟩∥L∞
dP

= P (Ei) ∥E(⟨θt, x̄i⟩|Ft−1)− E⟨θt, x̄i⟩∥L∞

≤ 2φ1P (Ei) ∥θt∥L∞
(9)

where the second equality follows from noting that Xt is Ft−1-measurable, and (9) follows from (5) and (8). Thus,

|E ((⟨θt, Xt⟩ − ⟨θ∗, Xt⟩)IBi(Xt))|

≤ |E ⟨θt, Xt − x̄i⟩IBi(Xt)|

+ |E ⟨θ∗, Xt − x̄i⟩IBi(Xt)|

+ |E(⟨θt, x̄i⟩ − ⟨θ∗, x̄i⟩)IBi(Xt)|

≤ 2(ϵ+ φ1)P (Ei) ∥θt∥L∞
(10)

where (10) follows from (3), (4) and (9). By (10), noting that the events Ei, i ∈ N partition Ω, and by applying

the dominated convergence theorem, we have,

|E (⟨θt, Xt⟩ − ⟨θ∗, Xt⟩)|

≤
∑
i∈N
|E ((⟨θt, Xt⟩ − ⟨θ∗, Xt⟩)IBi(Xt))| (11)

≤
∑
i∈N

2P (Ei)(ϵ+ φ1) ∥θt∥L∞
(12)

= 2(ϵ+ φ1) ∥θt∥L∞
. (13)
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Finally, since this holds for every ϵ, we obtain,

νn − ν̃n ≤ sup
π∈Π

n∑
t=1

|E(⟨θt, Xt⟩ − ⟨θ∗, Xt⟩)|

≤ 2nφ1 ∥θt∥L∞
(14)

and the result follows.

Denote by Rπ(n) the regret with respect to (2) incurred by a policy π = (X
(π)
t , t ∈ N) after n rounds, i.e.

Rπ(n) := ν̃n −
n∑

t=1

E⟨θt, X(π)
t ⟩. (15)

In this paper, we consider a subclass of the problem where the process (θt, t ∈ N) has an exponential φ-mixing

rate, so that there exists some a0, γ0 ∈ (0,∞) such that for all m ∈ N,

φm ≤ ae−γm. (16)

We focus on the case where a and γ in (16) are known. In fact, knowing the exact values of a and γ is not crucial;

an upper bound on a and a lower bound on γ would suffice. For simplicity, we retain the parameters a and γ,

treating them as bounds on the true rate parameters. We propose LinMix-UCB, outlined in Algorithms 1 and 2 for

the cases of finite and infinite horizon respectively.

Algorithm 1 LinMix-UCB (finite horizon)

Input: horizon n; regularization parameter λ; φ-mixing rate parameters: a, γ ∈ (0,∞)

Specify block-length k given by (17)

for m = 0, 1, 2, . . . , ⌊n/k⌋ do

for ℓ = 1, 2, . . . , k do

t← mk + ℓ

if m = 0 then

Xt ← x0 ▷ x0 is a fixed unit vector in A

else

Xt ← argmaxx∈A maxθ∈Cmax{0,m−1}⟨x, θ⟩

Play action Xt to obtain reward Yt

if ℓ = 1 then

Calculate confidence ellipsoid Cm (20)
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The proposed algorithm is inspired by such UCB-type approaches as LinUCB and its variants, including LinRel [1]

and OFUL [2], all of which are designed for linear bandits in the simpler iid noise setting, see [4, Chapter 19]

and references therein. The main challenge in our setting is to devise an exploration-exploitation strategy that is

robust against the long-range dependencies in the process (θt, t ∈ N). We construct confidence ellipsoids around

the empirical estimates of θ∗ obtained via “near-independent” samples, and similarly to LinUCB and its variants,

we rely on the principle of Optimism in the Face of Uncertainty. More specifically, the algorithm works as follows.

A finite horizon n is divided into intervals of length

k = max
{
1, k̄
}

(17)

with k̄ defined as  1

γ
log

 6aγn2

1 + 4
√
n ∥θt∥L∞

+

√
8d×n log(n(1+ n

λd ))

λ


where λ is a regularization parameter used in the estimation step. At every time-step t = mk+1, m = 0, 1, . . . , ⌊n/k⌋

which marks the beginning of each interval of length k, the payoffs Ys := ⟨θs, Xs⟩ collected every k-steps at

s = m′k + 1, m′ = 0, 1, . . . ,max{0,m − 1}, are used to generate a regularized least-squares estimator θ̂m of

θ∗ = Eθt, and in turn, produce a confidence ellipsoid Cm. That is, for each m = 0, 1, . . . , ⌊n/k⌋ we have

θ̂m :=

argmin
θ∈Θ

max{0,m−1}∑
m′=0

s=m′k+1

(Ys − ⟨θ,Xs⟩)2 + λ ∥θ∥22

 (18)

where the regularisation parameter λ > 0 ensures a unique solution given by

θ̂m = (λI + Vm)−1

max{0,m−1}∑
m′=0

s=m′k+1

YsXs (19)

with Vm :=

max{0,m−1}∑
m′=0

s=m′k+1

XsX
⊤
s takes values in Rd×d and I is the identity matrix in Rd×d. This gives rise to the

following confidence ellipsoid

Cm :=

{
θ ∈ Θ :

∥∥∥θ − θ̂m

∥∥∥2
ζ2(λI+Vm)

≤ bn

}
(20)

where ∥x∥2A := x⊤Ax for x ∈ Rd and A ∈ Rd×d, ζ := 2 ∥θt∥L∞
, and bn > 0 is chosen such that

√
bn is equal

to,

2
√
λ ∥θt∥L∞

+

√
2 log n+ d log

(
1 +

n

knλd

)
. (21)

We are now in a position to analyze the regret of the proposed algorithm.
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Theorem 1. Suppose that the stationary φ-mixing process (θt, t ∈ N) has an exponential mixing rate, so that there

exists some a, γ ∈ (0,∞) such that φm ≤ ae−γm for all m ∈ N. The regret (with respect to ν̃n) of LinMix-UCB

(finite horizon) played for n ≥
⌈

3aγ
√
λ

2
√
λ∥θt∥L∞+

√
2

⌉
rounds satisfies

Rπ(n)

∥θt∥L∞

≤ 1

n
+ C log(n)

√
2dn log(n(1 +

n

λd
))

where

C :=

(
12(
√
2λ+ 4

√
2λ ∥θt∥L∞

+ 1)

γ
√
2λ

)
,

and λ > 0 is the regularization parameter.

Proof. For a fixed k ∈ N, consider the sub-sequence θik+1, i = 0, 1, 2, . . . of the stationary sequence of Rd-valued

random variables θt, t ∈ N. Let Uj , j ∈ N be a sequence of iid random variables uniformly distributed over [0, 1]

such that each Uj is independent of σ({θt : t ∈ N}). Set θ̃0 = θ1. As follows from Berbee’s coupling lemma [12] -

see also [6, Lemma 5.1, pp. 89] - there exists a random variable

θ̃1 = g1(θ̃0, θk+1, U1)

where g1 is a measurable function from Rd × Rd × [0, 1] to Rd such that θ̃1 is independent of θ̃0, has the same

distribution as θk+1 and

Pr(θ̃1 ̸= θk+1) = β(σ(θ̃0), σ(θk+1)).

Similarly, there exists a random variable

θ̃2 = g2((θ̃0, θ̃1), θ2k+1, U2)

where g2 is a measurable function from (Rd)2 × Rd × [0, 1] to Rd such that θ̃2 is independent of (θ̃0, θ̃1), has the

same distribution as θ2k+1 and

Pr(θ̃2 ̸= θ2k+1) = β(σ(θ̃0, θ̃1), σ(θ2k+1)).

Continuing inductively in this way, at each step j = 3, 4, . . . , by Berbee’s coupling lemma [12], there exists a

random variable

θ̃j = gj((θ̃0, θ̃1, . . . , θ̃j−1), θjk+1, Uj)

where gj : (Rd)j × Rd × [0, 1]→ Rd is a measurable function such that

1) θ̃j is independent of (θ̃0, θ̃1, . . . , θ̃j−1)

2) θ̃j has the same distribution as θj and,

Pr(θ̃j ̸= θj) = β(σ(θ̃0, θ̃1, . . . , θ̃j−1), σ(θjk+1)). (22)

Following a standard argument (see, e.g. [13, Lemma 6]) it can be shown that,

β(σ(θ̃0, θ̃1, . . . , θ̃j−1), σ(θjk+1)) ≤ βk (23)

DRAFT

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3533299

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



III MAIN RESULTS 9

for all j ∈ N. The sequence of random variables θ̃j , j = 0, 1, 2, . . . can be used to construct a “ghost” payoff

process (θ̄t, t ∈ N) as follows. Let θ̄ik+1 = θ̃i for all i = 0, 1, 2, . . . and take θ̄t to be an independent copy of θ1

for all t = ik + 2, . . . , (i+ 1)k, i = 0, 1, 2, . . . . Denote by π := (Xt, t ∈ N) the policy induced by Algorithm 1

when the process (θt, t ∈ N) is used to generate the payoffs Yt := ⟨Xt, θt⟩. Similarly let π̄ := (X̄t, t ∈ N) be the

policy generated by Algorithm 1 when the sequence (θ̄t, t ∈ N) produces the payoffs Ȳt := ⟨X̄t, θ̄t⟩ at each t ∈ N.

For a fixed n ∈ N, define the event

En := {∃i ∈ 0, 1, . . . , (⌊n/k⌋)− 1 : θik+1 ̸= θ̄ik+1} (24)

and observe that as follows from the above coupling argument, i.e. by (22) and (23), it holds that

Pr(En) ≤ nβk/k. (25)

Let G0 = Ḡ0 := {∅,Ω}. Define the filtrations

Gm := σ({θik+1 : i = 0, 1, . . . ,m− 1})

and

Ḡm := σ({θ̄ik+1 : i = 0, 1, . . . ,m− 1})

for m = 1, 2, . . . , ⌊n/k⌋. By design, for t = 1, . . . , k, the action Xt is set to a pre-specified constant x0 ∈ A

(independent of the data), and is thus simply G0-measurable. Observe that the first confidence ellipsoid C0 which is

generated at t = 1 is not used directly, but only after k steps. For each time-step t = mk+ℓ with m ∈ 1, . . . , ⌊n/k⌋

and ℓ = 1, 2, . . . , k, the action Xt depends on the confidence ellipsoid Cmax{0,m−1}, which is in turn updated at

least k time-steps prior to t. More specifically, Xt is measurable with respect to Gm. As a result, there exists a

measurable function

ft : (Rd)m → A

such that

Xt = ft(θ1, θk+1, θ2k+1, . . . , θ(m−1)k+1).

In words, ft is a mathematical representation of Algorithm 1 at time t. Similarly, noting that the same algorithm is

applied to (θ̄t, , t ∈ N), it holds that

X̄t = ft(θ̄1, θ̄k+1, θ̄2k+1, . . . , θ̄(m−1)k+1).

As a result, for each i = 1, . . . , ⌊n/k⌋, we have,

Yik+1IEc
n
= ⟨θik+1, Xik+1⟩IEc

n

= ⟨θik+1, fik+1(θ1, . . . , θ(i−1)k+1)⟩IEc
n

= ⟨θ̄ik+1, fik+1(θ̄1, . . . , θ̄(i−1)k+1)⟩IEc
n

= Ȳik+1IEc
n
, (26)
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III MAIN RESULTS 10

almost surely. On the other hand, by a simple application of Cauchy-Schwarz and Hölder inequalities, it is

straightforward to verify that for each t = 1, . . . , n we have,

E|YtIEn
| =

∫
En

|⟨θt, Xt⟩|dP

≤ P (En) ∥θt∥L∞
(27)

and similarly,

E|ȲtIEn
| ≤ P (En) ∥θt∥L∞

. (28)

It follows that
⌊n/k⌋∑
i=0

∣∣EYik+1 − EȲik+1

∣∣
=

⌊n/k⌋∑
i=0

∣∣E(Yik+1IEn)− E(Ȳik+1IEn)
∣∣ (29)

≤ 2n ∥θt∥L∞
P (En)/k (30)

≤ 2n2 ∥θt∥L∞
βk/k

2 (31)

where (29) follows from (26), (30) follows from (27) and (28), and (31) is due to (25). Next, let us consider the

time-steps within each segment. Fix any t = mk + ℓ for some m ∈ 1, . . . , ⌊n/k⌋ and some ℓ ∈ 2, . . . , k. It is

straightforward to verify that [5, Theorem 4.4(c2) - vol. I pp. 124] can be extended to the case of vector-valued

random variables, by an analogous argument based on simple functions where absolute values of constants are

replaced by norms. This leads to, ∥∥E(θt|Ḡm ∨ Gm)− Eθt
∥∥
L∞

(32)

≤ 2φ(Ḡm ∨ Gm, σ(θt)) ∥θt∥L∞
(33)

≤ 2φk ∥θt∥L∞
. (34)

Define the event

Um := {∃i ∈ 0, 1, . . . ,m− 1 : θik+1 ̸= θ̄ik+1}.

Observe that as with (24) we have

Pr(Um) ≤ mβk (35)

so that similarly to (27), it holds that,

max{E|YtIUm |,E|ȲtIUm |} ≤ mβk ∥θt∥L∞
. (36)
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III MAIN RESULTS 11

for t = mk + ℓ with some m ∈ 1, . . . , ⌊n/k⌋ and ℓ ∈ 2, . . . , k fixed above. Moreover,

E(⟨θ̄t, X̄t⟩IUc
m
) = E(IUc

m
E(⟨θ̄t, Xt⟩|Ḡm ∨ Gm)) (37)

= E(IUc
m
⟨Xt,E(θ̄t|Ḡm ∨ Gm)⟩) (38)

= E(IUc
m
⟨Xt,E θt⟩) (39)

where (37) follows from the definition of U c
m and the fact that IUc

m
is measurable with respect to Ḡm∨Gm, and (38)

follows from noting that Xt is measurable with respect Gt. Finally, (39) is due to the stationarity of θt together with

the fact that by construction θ̄t is an independent copy of θ1 for this choice of t (within the segments). Similarly,

we have,

E(⟨θt, Xt⟩IUc
m
) = E(IUc

m
E(⟨θt, Xt⟩|Ḡm ∨ Gm)) (40)

= E(IUc
m
⟨Xt,E(θt|Ḡm ∨ Gm)⟩). (41)

Hence, for any m ∈ 1, . . . , ⌊n/k⌋ and t = mk + ℓ for some ℓ ∈ 2, . . . , k we have,

|E((⟨θt, Xt⟩ − E⟨θ̄t, X̄t⟩)IUc
m
)|

≤ E(IUc
m
⟨Xt, |E(θt|Ḡm ∨ Gm)− E θt|⟩)) (42)

=

∫
Uc

m

⟨Xt, |E(θt|Ḡm ∨ Gm)− E θt|⟩dP (43)

≤
∫
Uc

m

∥Xt∥2
∥∥E(θt|Ḡm ∨ Gm)− E θt

∥∥
2
dP (44)

≤ P (U c
m)
∥∥E(θt|Ḡm ∨ Gm)− E θt

∥∥
L∞

(45)

≤ 2φk ∥θt∥L∞
(46)

where (42) follows from (39) and (41); (44) and (45) follow from Cauchy-Schwarz and Hölder inequalities

respectively, and (46) follows from (32). We obtain,

⌊n/k⌋∑
m=1

k∑
ℓ=2

|E(Ymk+ℓ − Ȳmk+ℓ)|

=

⌊n/k⌋∑
m=0

k∑
ℓ=2

|E((Ymk+ℓ − Ȳmk+ℓ)IUc
m
)|

+ |E((Ymk+ℓ − Ȳmk+ℓ)IUm
)| (47)

≤ 2nφk ∥θt∥L∞
+ 2n2βk ∥θt∥L∞

(48)

≤ 4n2φk ∥θt∥L∞
(49)

where (47) follows from noting that by design, EȲt = EYt for all t ∈ 1, . . . , k as the algorithm sets Xt = x0 for

some constant x0 ∈ A independent of the data, (48) follows from (36) and (46), and (49) is due to the fact that in
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general βk ≤ φk for all k ∈ N [5, Proposition 3.11 - vol. I pp. 76]. Therefore, by (31) and (49) we obtain∣∣Rπ(n) −Rπ̄(n)
∣∣

≤
⌊n/k⌋∑
i=0

∣∣EYik+1 − EȲik+1

∣∣
+

⌊n/k⌋∑
m=0

k∑
ℓ=2

∣∣EYmk+ℓ − EȲmk+ℓ

∣∣
≤ 6n2φk ∥θt∥L∞

. (50)

It remains to calculate the regret of π̄ = {X̄t : t ∈ 1, . . . , n}. The payoff Ȳt = ⟨θ̄t, X̄t⟩ obtained via the policy π̄

at time-step t can be decomposed as

Ȳt = ⟨θ∗, X̄t⟩+ ηt (51)

where

ηt := ⟨θ̄t − θ∗, X̄t⟩. (52)

For each m = 0, 1, . . . , ⌊n/k⌋, set

Sm =

m∑
i=0

ηik+1X̄ik+1

define

Vm :=

m∑
m′=0

s=m′k+1

X̄sX̄
⊤
s

and let I ∈ Rd×d be the identity matrix. Consider the estimator

θ̂m := (λI + Vm)−1
m∑

m′=0
s=m′k+1

ȲsX̄s

and observe that

θ̂m = (λI + Vm)−1

Sm +

m∑
m′=0

s=m′k+1

X̄sX̄
⊤
s θ∗

 (53)

= (λI + Vm)−1 (Sm + Vmθ∗) . (54)
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III MAIN RESULTS 13

Let ζ := 2 ∥θt∥L∞
. We can write,∥∥∥θ̂m − θ∗

∥∥∥
ζ2(λI+Vm)

=
∥∥(λI + Vm)−1 (Sm + Vmθ∗)− θ∗

∥∥
ζ2(λI+Vm)

≤ ∥Sm∥ζ2(λI+Vm)−1

+ ζλ1/2(θ∗⊤(I − (λI + Vm)−1Vm)θ∗)1/2

= ∥Sm∥ζ2(λI+Vm)−1 + ζλ(θ∗⊤(λI + Vm)−1θ∗)1/2

≤ ∥Sm∥ζ2(λI+Vm)−1 + ζλ1/2 ∥θ∗∥2 (55)

where (55) follows from noting that Vm is positive semi-definite and Löwner matrix order is reversed through

inversion, so that

θ∗⊤(λI + Vm)−1θ∗ ≤ θ∗⊤(λI)−1θ∗ = λ−1 ∥θ∗∥22 .

Observe that X̄t for t = mk + 1, m = 0, 1, . . . , ⌊n/k⌋ is Ḡm-measurable, and that by construction θ̄ik+1 for

i = 0, 1, . . . ,m are iid. Thus,

E(ηt) = E(⟨X̄t,E(θ∗ − θt|Ḡm)⟩) = 0.

Furthermore, it is straightforward to verify that by Cauchy-Schwarz inequality and noting that Xt takes values

in the unit ball, ηt is ζ-subGaussian, i.e. for all α ∈ R and every m = 0, 1, . . . , ⌊n/k⌋ and t = mk + 1 we have,

E(eαηt |Ḡm)) ≤ eα
2ζ2/2 almost surely. In particular,

E(exp{⟨x,Xt⟩ηt}|Ḡm))

≤ exp{⟨x,Xt⟩2ζ2/2}

= exp

{
ζ2 ∥x∥2XtX⊤

t

2

}
(56)

almost surely for all x ∈ Rd. Define

Mm(x) := exp{⟨x, Sm⟩ −
ζ2 ∥x∥2Vm

2
}

for x ∈ Rd and m = 0, 1, . . . , ⌊n/k⌋. We have

E(Mm(x)|Ḡm)

= Mm−1(x) exp

{
−ζ2

2
∥x∥2X̄mk+1X̄⊤

mk+1

}
× E

(
exp

{
ηmk+1⟨x, X̄mk+1⟩

} ∣∣∣Ḡm) (57)

≤Mm−1(x) (58)
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where (57) follows from the fact that X̄mk+1 is Ḡm-measurable, and (58) follows from (56). Moreover, by (56)

and Ḡ0-measurability of X̄1, for every x ∈ Rd it holds that

E(M0(x))

= E

(
−
ζ2 ∥x∥2X̄1X̄⊤

1

2
E
(
exp

{
⟨x, X̄1⟩η1

} ∣∣∣Ḡ0))

≤ 1. (59)

Let W : Ω → Rd be a d-dimensional Gaussian random vector with mean 0 ∈ Rd and covariance matrix

(ζ2λ)−1I ∈ Rd×d; denote by PW its distribution on Rd. Define

M̃m :=

∫
Rd

Mm(x)dPW (x) (60)

for each m ∈ 0, 1, . . . , ⌊n/k⌋. Observe that by (59) and Fubini’s theorem we have

EM̃0 = E
(∫

Rd

M0(x)dPW (x)

)
=

∫
Rd

EM0(x)dPW (x)

≤ 1 (61)

Furthermore, by completing the square in the integrand, we can write

M̃m

=exp

{
1

2
∥Sm∥2ζ2(λI+Vm)−1

}√
λd

det(λI + Vm)
(62)

On the other hand, by Fubini’s theorem together with (58), we have that M̃m is a non-negative super-martingale,

i.e.

E(M̃m|Ḡm) =

∫
Rd

E(Mm(x)|Ḡm)dPW

≤
∫
Rd

Mm−1(x)

= M̃m−1. (63)

As a result, by Doob’s maximal inequality (see, e.g. [14, Theorem 7.3.1 - pp. 132]) for every δ > 0 it holds that

Pr
(
sup
m∈N

log M̃m ≥ log(1/δ)
)

= Pr

(
sup
m∈N

M̃m ≥
1

δ

)
≤ δEM̃0 (64)

≤ δ (65)
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where the last inequality follows from (61). Consider the event E defined as

E :=
{
∃m : ∥Sm∥2ζ2(λI+Vm)−1

≥ 2 log

(
1

δ

)
+ log

(
det(λI + Vm)

λd

)}
.

By (62) and (64), we have

Pr (E) ≤ δ. (66)

Define bδn such that √
bδn := 2

√
λ ∥θt∥L∞

+

√
2 log

(
1

δ

)
+ d log

(
1 +

n

kλd

)
and let

Cm :=

{
θ ∈ Θ :

∥∥∥θ − θ̂m

∥∥∥2
ζ2(λI+Vm)

≤ bδn

}
. (67)

By (55) and (66), with probability at least 1− δ it holds that,∥∥∥θ̂m − θ∗
∥∥∥
ζ2(λI+Vm)

≤ ζ
√
λ+

√
2 log

(
1

δ

)
+ log

(
det(λI + Vm)

λd

)
≤ bδn (68)

where the second inequality follows from the definition of ζ as well as from [4, Equation 20.9, pp. 261]. Then, it

immediately follows that

Pr({∃m : θ∗ /∈ Cm}) ≤ δ. (69)

Consider the instantaneous regret

rmk+1 := ⟨θ∗, X̄∗
mk+1 − X̄mk+1⟩

of π̄ for m = 1, . . . , ⌊n/k⌋ − 1, where X̄∗
m is an optimal action at mk + 1 so that

X̄∗
m ∈ argmax

x∈Cm−1

⟨θ∗, x⟩

almost surely. Let us recall that the algorithm selects

X̄mk+1 ∈ argmax
x∈A

max
θ∈Cmax{0,m−1}

⟨θ, x⟩.

With probability at least 1− δ we have,

⟨θ∗, X̄∗
mk+1⟩ ≤ max

θ∈Cmax{0,m−1}
⟨θ, X̄∗

mk+1⟩ (70)

≤ max
θ∈Cmax{0,m−1}

⟨θ, X̄mk+1⟩. (71)
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Fix some

θ̄mk+1 ∈ argmax
θ∈Cmax{0,m−1}

⟨θ, X̄mk+1⟩.

With probability at least 1− δ it holds that,

rmk+1

≤ ⟨θ̄mk+1 − θ∗, X̄mk+1⟩

≤ ⟨θ̄mk+1 − θ∗, θ̄mk+1 − θ∗⟩1/2⟨X̄mk+1, X̄mk+1⟩1/2

≤
∥∥θ̄mk+1 − θ∗

∥∥
ζ2(λI+Vmax{0,m−1})

×
∥∥X̄mk+1

∥∥
ζ2(λI+Vmax{0,m−1})−1

≤
√
bδn × ζλ−1/2

∥∥X̄mk+1

∥∥
2

≤ ζ

√
bδn
λ

(72)

where in much the same way as with (55), (72) follows from noting that, Vm is positive semi-definite so the matrix

order is reversed through inversion, i.e.

x⊤(λI + Vm)−1x ≤ x⊤(λI)−1x

for all x ∈ Rd. It follows that

⌊n/k⌋−1∑
m=1

rmk+1 ≤

√√√√n

k

⌊n/k⌋−1∑
m=1

r2mk+1

≤ 2 ∥θt∥L∞

√
nbδn
kλ

(73)

which in turn yields

Rπ̄(n)

≤ (1− δ)k

∥θt∥L∞
+

⌊n/k⌋−1∑
m=1

Ermk+1

+ δ ∥θt∥L∞

≤ ∥θt∥L∞

(
(1− δ)k

(
1 + 2

√
nbδn
kλ

)
+ δ

)
(74)

By (50) and (74), taking δ = 1/n, and noting that φk ≤ ae−γk for some a, γ ∈ (0,∞), we have,

Rπ(n)

∥θt∥L∞

≤ 1

n
+ 6n2ae−γk

+ k(1 + 4
√
n ∥θt∥L∞

)

+ k

√
8dn log(n(1 + n

λd ))

λ
(75)
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Optimizing (75) for k we obtain k⋆ given bylog
 6aγn2

1+4
√
n ∥θt∥L∞

+

√
8dn log(n(1+ n

λd ))

λ

1/γ
 (76)

For n ≥
⌈

3aγ
√
λ

2
√
λ∥θt∥L∞+

√
2

⌉
and k = max{1, k⋆} we have,

Rπ(n)

∥θt∥L∞

≤ 1

n
+

(
12(
√
2λ+ 4

√
2λ ∥θt∥L∞

+ 1)

γ
√
2λ

)

×
√

2dn log(n(1 +
n

λd
)) log(n).

Algorithm 2 LinMix-UCB (∞ - horizon)

Input: regularization parameter λ; φ-mixing rate parameters: a, γ ∈ (0,∞)

n0 ← max

{
1,

⌈
3aγ

√
λ

2
√
λ∥θt∥L∞+

√
2

⌉}

for i = 0, 1, 2, . . . do

ni ← 2in0

Run Algorithm1(ni, λ, a, γ) from t = (2i − 1)n0 + 1 to t = (2i+1 − 1)n0

Algorithm 1 can be turned into an infinite-horizon strategy using a classical doubling-trick. The procedure is

outlined in Algorithm 2 below. As in the finite-horizon setting, the algorithm aims to minimize the regret with

respect to (2), in the case where the φ-mixing coefficients of the process (θt, t ∈ N) satisfy

φm ≤ ae−γm

for some fixed a, γ ∈ (0,∞) and all m ∈ N.

The algorithm works as follows. At every round i = 0, 1, 2, . . . a horizon is determined as

ni = 2in0

with

n0 := max

{
1,

⌈
3aγ
√
λ

2
√
λ ∥θt∥L∞

+
√
2

⌉}
and the algorithm plays the finite-horizon strategy specified in Algorithm 1 from t =

∑i−1
j=0 nj to t =

∑i
j=0 nj .

The regret of this algorithm is given in Theorem 2.
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Theorem 2. Suppose, as in Theorem 1, that there exist a, γ ∈ (0,∞) such that φ-mixing coefficients of the

stationary process (θt, t ∈ N) satisfy φm ≤ ae−γm for all m ∈ N. Then, the regret (with respect to ν̃n) of

LinMix-UCB (infinite horizon) after n rounds of play satisfies

Rπ(n)

2 ∥θt∥L∞

≤ n0 + C(log2(n+ 1) + 1) log(2(n+ 1))

×

√
(n+ 1)d× log

(
2(n+ 1)(1 +

2(n+ 1)

λd
)

)

where C :=

(
12(

√
2λ+4

√
2λ∥θt∥L∞+1)

γ
√
2λ

)
, and

n0 := max

{
1,

⌈
3aγ
√
λ

2
√
λ ∥θt∥L∞

+
√
2

⌉}
and λ > 0 is the regularization parameter.

Proof. For n ∈ N, let

j(n) := min{i ∈ N :

i∑
i=0

ni ≥ n}.

Recall that the algorithm plays the finite-horizon strategy of Algorithm 1 during non-overlapping intervals of length

ni = 2in0, i = 0, 1, 2, . . . with

n0 := max

{
1,

⌈
3aγ
√
λ

2
√
λ ∥θt∥L∞

+
√
2

⌉}
.

By Theorem 1 and that
j(n)∑
i=0

1

ni
≤ n0

∞∑
i=0

2−i ≤ 2n0,

we have the following upper-bound on Rπ(n)
∥θt∥L∞

,

2n0 + C

j(n)∑
i=0

log(ni)

√
2dni log(ni(1 +

ni

λd
)) (77)

with the constant C as given in the theorem statement. The result follows from (77), and the fact that as follows

from the definition of j(n) we have,
j(n)∑
i=0

ni = n0(2
j(n)+1 − 1) ≥ n

so that

j(n) =

⌈
log2(

n

n0
+ 1)

⌉
and 2j(n) ≤ 2(n+ 1).
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IV. OUTLOOK

We have formulated a generalization of both the classical linear bandits with iid noise, and the finite-armed restless

bandits. In the problem that we have considered, an unknown Rd-valued stationary φ-mixing sequence of parameters

(θt, t ∈ N) gives rise to the payoffs. We have provided an approximation of the optimal restless linear bandit

strategy via a UCB-type algorithm, in the case where the process (θt, t ∈ N) has an exponential mixing rate. The

regret of the proposed algorithm, namely LinMix-UCB, with respect a more relaxed oracle which always plays a

multiple of Eθt, is shown to be

O
(√

dn polylog(n)
)
.

Our results differ from that of [8] which tackles the (simpler) finite-armed restless φ-mixing bandit problem, in that

they do not require an exponential φ-mixing rate in order to ensure an O(log n) regret with respect to the highest

stationary mean in their setting. With only a finite number of arms to play, they are able to base their approach on

a Hoeffding-type inequality for φ-mixing processes. However, this does not extend to our linear bandit framework.

A natural open problem is the derivation of a lower-bound on the regret with respect to νn (or with respect to the

best switching strategy in the finite-armed setting of [8]).

A. Knowledge of the mixing rates.

Our algorithms require (bounds on) the true φ mixing rate parameters. Although this assumption is standard in

time-series analysis, an intriguing objective would be to relax this assumption and infer the mixing parameters while

maximizing the expected cumulative payoff. However, for reasons outlined below, this is a challenging endeavor

that is beyond the scope of the present paper.

The problem of estimating the mixing coefficients of a process from its sample-paths has only recently garnered

attention, and the results so far concern the full-information setting. For example, [15] have proposed strongly

consistent estimators for the α and β mixing coefficients of a stationary ergodic process. Their results are necessarily

asymptotic, as it is provably impossible to obtain rates of convergence for empirical measures in this general class

of processes. However, since finite-time analysis is crucial in a bandit problem, convergence rates are required for

the estimators to be effectively deployed as part of a bandit strategy. On the other hand, for the more restrictive

class of geometrically ergodic Markov chains, convergence rates for β-mixing estimators can be achieved under

density conditions or when the state space is finite [13], [16]. Furthermore, the existing estimators are designed for

fully observed sample-paths and cannot readily provide estimates in the bandit context considered in the present

paper where the process (θt, t ∈ N) is only partially observed.

Estimating the mixing coefficients while playing a restless bandit strategy requires more care compared to estimation

from a fully observed sample-path. As demonstrated in [8, Example 1], in this framework, a policy can introduce

strong couplings between past and future payoffs, resulting in a payoff sequence with a completely different

dependency structure than that of the original process.
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Finally, estimating φ-mixing coefficients is significantly more challenging than estimating β-mixing coefficients. A

key challenge in estimating φm lies in conditioning on potentially rare events with small probabilities. To the best

of our knowledge, no estimator for φm exists, even in the full-information setting.

B. Towards a relaxation.

In light of the challenges in consistently estimating φm, one might consider incorporating a sequential hypothesis

test into Algorithm 2 to determine (at least asymptotically) whether φm is indeed upper bounded by ae−γm,

without directly estimating φm. Noting that, in general, βm ≤ φm, m ∈ N (see, e.g. [5]), and under some mild

assumptions such as the summability of the φ-mixing coefficients, one may be able to adopt the asymptotically

consistent hypothesis test for the β-mixing rate from [15], which is based on estimates of βm rather than φm.

In order to use this test as part of a bandit strategy, the Type I and Type II errors of the test would need to be

controlled; this can be done if an upper-bound on
∑

m∈N φm is known and using an appropriate concentration

bound, such as [6, Corollary 2.1]. As a result, we conjecture that Algorithm 2 can be modified so that at each

i ∈ N, some
√
ni samples are allocated to test the β-mixing rate. Recall that ni, i ∈ N is an increasing sequence,

with each element representing the length of the ith batch on which the finite-horizon algorithm is executed. The

modified algorithm would then continue to apply the bandit strategy on ni −
√
ni samples, operating under the

null hypothesis that φm ≤ ae−γm. The process would halt once the null hypothesis is rejected. Maintaining the

number of samples per test at the order of
√
ni ensures that the algorithm’s regret remains unaffected. Although

this roadmap appears promising, it requires thorough exploration to assess its feasibility. We defer this investigation

to future work.
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