Abstract

A more general formulation of the linear bandit problem is considered to allow for dependencies over time. Specifically, it is assumed that there exists an unknown \mathbb{R}^d -valued stationary φ -mixing sequence of parameters $(\theta_t, t \in \mathbb{N})$ which gives rise to payoffs. This instance of the problem can be viewed as a generalization of both the classical linear bandits with iid noise, and the finite-armed restless bandits. In light of the well-known computational hardness of optimal policies for restless bandits, an approximation is proposed whose error is shown to be controlled by the φ -dependence between consecutive θ_t . An optimistic algorithm, called LinMix-UCB, is proposed for the case where θ_t has an exponential mixing rate. The proposed algorithm is shown to incur a sub-linear regret of $\mathcal{O}\left(\sqrt{dn \operatorname{polylog}(n)}\right)$ with respect to an oracle that always plays a multiple of $\mathbb{E} \ \theta_t$. The main challenge in this setting is to ensure that the exploration-exploitation strategy is robust against long-range dependencies. The proposed method relies on Berbee's coupling lemma to carefully select near-independent samples and construct confidence ellipsoids around empirical estimates of $\mathbb{E} \theta_t$.

I. INTRODUCTION

The problem of sequential decision making in the presence of uncertainty is prevalent in a variety of modern applications such as online advertisement, recommendation systems, network routing and dynamic pricing. Through the framework of *stochastic bandits* one can model this task as a repeated game between a *learner* and a stochastic *environment*: at every time-step, the learner chooses an *action* from a pre-specified set of actions \mathcal{A} and receives a (random) real-valued payoff. The objective is to maximize the expected cumulative payoff over time. In a stochastic *linear* bandit model the payoff Y_t received at each time-step t is the inner product between an \mathbb{R}^d -valued action X_t and an unknown parameter vector $\theta \in \mathbb{R}^d$. That is,

$$Y_t = \langle \theta, X_t \rangle + \eta_t$$

with random noise η_t ; see e.g. [1], [2], as we well as [3], [4] and references therein. Let us point out that in the case where the action space \mathcal{A} is restricted to a set of standard unit vectors in \mathbb{R}^d the problem is reduced to that of finite-armed bandits. The noise sequence η_t is typically assumed to be independently and identically distributed (iid). However, this assumption does not usually hold in practice.

In this paper, we consider a more general formulation of the linear bandit problem which allows for dependencies over time. More specifically, we assume that there exists an unknown \mathbb{R}^d -valued stationary sequence of parameters $(\theta_t, t \in \mathbb{N})$ giving rise to the payoffs $Y_t = \langle \theta_t, X_t \rangle$, $t \in \mathbb{N}$ with the actions X_t taking values in a unit ball in \mathbb{R}^d . As with any bandit problem, the task of balancing the trade-off between exploration and exploitation

^{© 2025} IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

I INTRODUCTION

calls for finite-time analysis, which in turn relies on concentration inequalities for empirical averages. For this reason, we opt for a natural approach in time-series analysis which is to require that the process satisfy a form of asymptotic independence. More specifically, we assume that $(\theta_t, t \in \mathbb{N})$ is φ -mixing so that its sequence of φ -mixing coefficients $\varphi_m, m \in \mathbb{N}$ defined by

$$\varphi_m := \sup_{\substack{j \in \mathbb{N} \ U \in \sigma(\{\theta_t: t=1, \dots, j\}) \\ V \in \sigma(\{\theta_t: t>j+m\})}} \sup_{\substack{P(V) - P(V|U)| \\ i \neq j \leq n}} |P(V) - P(V|U)|$$

converges to 0 as m approaches infinity, see, e.g. [5], [6]. Observe that while θ_t are identically distributed here, they are not independent.

To compare with the classical formulation, we can write

$$Y_t = \langle \theta^*, X_t \rangle + \eta_t$$

where $\theta^* := \mathbb{E}\theta_t$ is the (unknown) stationary mean of θ_t and

$$\eta_t := \langle \theta_t - \theta^*, X_t \rangle$$

is the noise process, which is clearly non-iid. This instance of the problem can be viewed as a generalization of the classical linear bandit problem with iid η_t [2] and the finite-armed restless Markovian and φ -mixing bandits considered in [7] and [8] respectively. Observe that in much the same way as with the examples given in [7, Section 3], a strategy that leverages temporal dependencies can accumulate a higher expected payoff than that which can be obtained by playing a fixed action in \mathcal{A} that is most aligned with θ^* . In the finite-armed restless bandit problem, this is called the *optimal switching strategy* whose exact computation in certain related instances of the problem is known to be intractable [9]. In [10], an algorithm is proposed for finite-armed restless bandits in the case where the payoff distributions follow an AR model. An approximation of the optimal switching strategy for finite-armed restless φ -mixing bandits is provided in [8].

We build upon [8] to approximate the optimal restless bandit strategy using the Optimism in the Face of Uncertainty principal. We show in Proposition 1 that the approximation error of an oracle which always plays a multiple of θ^* , is controlled by φ_1 and the ℓ_2 norm of θ_t , provided that the latter is almost surely bounded. The proof relies on Vitali's covering theorem [11] to address the technical challenges presented by the infinite action space $\mathcal{A} \subseteq \mathbb{R}^d$. We propose an algorithm, namely LinMix-UCB, which aims to minimize the regret in the case where the process $(\theta_t, t \in \mathbb{N})$ has an exponential mixing rate. The proposed algorithm is inspired by the UCB-based approach of [2] which is in turn designed for the simpler setting where the noise η_t is iid. The main challenge in our setting is to devise an exploration-exploitation strategy that is robust against the dependencies present in the process $(\theta_t, t \in \mathbb{N})$. This problem is similar to the that considered in [8]. However, their setting involves a finite number of arms, allowing the regret analysis to rely on a Hoeffding-type inequality for φ -mixing processes. This approach does not carry over to the linear bandit setting considered in the present paper. We rely on Berbee's coupling lemma [12] to carefully select near-independent samples and construct confidence ellipsoids around empirical estimates of θ^* .

We demonstrate that in the case where that $(\theta_t, t \in \mathbb{N})$ has an exponential mixing rate, LinMix-UCB incurs a sub-linear regret of $\mathcal{O}\left(\sqrt{dn \operatorname{polylog}(n)}\right)$ with respect to an oracle which always plays a multiple of θ^* . While our results are not confined to Markovian processes, we would like to point out that a natural example of a process with an exponential φ -mixing rate is any stationary ergodic aperiodic Markov chain, see, e.g. [5, Theorem 21.22 - vol. II pp. 329].

II. PRELIMINARIES AND PROBLEM FORMULATION

Let $\Theta \subseteq \mathbb{R}^d$ for some $d \in \mathbb{N}$. Suppose that $\boldsymbol{\theta} := (\theta_t, t \in \mathbb{N})$ is a stationary sequence of Θ -valued random variables defined on a probability space (Ω, \mathcal{B}, P) such that $\theta_t, t \in \mathbb{N}$ takes values in the space $\mathcal{L}_{\infty}(\Omega, \mathcal{B}, P; \mathbb{R}^d)$ equipped with its Euclidean norm $\|\cdot\|_2$. This means that

$$\|\theta_t\|_{\mathcal{L}_{\infty}} := \sup_{\omega \in \Omega} \|\theta_t(\omega)\|_2 < \infty.$$

We may sometimes use \mathcal{L}_{∞} or $\mathcal{L}_{\infty}(\Omega; \mathbb{R}^d)$ for $\mathcal{L}_{\infty}(\Omega, \mathcal{B}, P; \mathbb{R}^d)$ when the remaining parameters are clear from the context. Recall that the φ -dependence (see, e.g. [5]) between any pair of σ -subalgebras \mathcal{U} and \mathcal{V} of \mathcal{B} is given by $\varphi(\mathcal{U}, \mathcal{V}) := \sup\{|P(V) - P(V|U)| : U \in \mathcal{U}, P(U) > 0, V \in \mathcal{V}\}$. This notion gives rise to the sequence of φ -mixing coefficients $\varphi_m, m \in \mathbb{N}$ of $\boldsymbol{\theta}$ where for each $m \in \mathbb{N}$

$$\varphi_m := \sup_{j \in \mathbb{N}} \varphi(\sigma(\{\theta_t : 1 \le t \le j\}), \sigma(\{\theta_t : t \ge j + m\}))$$

We further assume that the process θ is φ -mixing so that $\lim_{m\to\infty} \varphi_m = 0$. Let \mathcal{A} be the unit ball in \mathbb{R}^d , which we call the *action space*. The linear bandit problem considered in this paper can be formulated as the following repeated game. At every time-step $t \in \mathbb{N}$, the player chooses an *action* from \mathcal{A} according to a mapping $X_t : \Omega \to \mathcal{A}$ and receives as *payoff* the inner product $\langle \theta_t, X_t \rangle$ between θ_t and X_t . The objective is to maximize the expected sum of the accumulated payoffs. Let \mathcal{F}_t , $t \ge 0$ be a filtration that tracks the payoffs $\langle \theta_t, X_t \rangle$ obtained in the past trounds, i.e. $\mathcal{F}_0 = \{\emptyset, \Omega\}$, and

$$\mathcal{F}_t = \sigma(\{\langle \theta_1, X_1 \rangle, \dots, \langle \theta_t, X_t \rangle\})$$

for $t \ge 1$. Each mapping X_t , $t \ge 1$ is assumed to be measurable with respect to \mathcal{F}_{t-1} ; this is equivalent to stating that X_t for each $t \ge 1$ can be written as a function of the past payoffs up to t - 1. The sequence

$$\boldsymbol{\pi} := (X_t, \ t \in \mathbb{N})$$

is called a *policy*. Let $\Pi = \{\pi := (X_t^{(\pi)}, t \ge 1) : X_t^{(\pi)} \text{ is } \mathcal{F}_{t-1}\text{-measurable for all } t \ge 1\}$ denote the space of all possible policies and define

$$\nu_n = \sup_{\boldsymbol{\pi} \in \Pi} \sum_{t=1}^n \mathbb{E} \langle \theta_t, X_t^{(\boldsymbol{\pi})} \rangle.$$
(1)

To simplify notation, we may sometimes write X_t for $X_t^{(\pi)}$ when the policy π is clear from the context.

III MAIN RESULTS

4

III. MAIN RESULTS

Consider the restless linear bandit problem formulated in Section II. Let $\theta^* = \mathbb{E} \theta_1$ be the (stationary) mean of the process $(\theta_t, t \in \mathbb{N})$. In light of the well-known computational hardness of optimal switching strategies for restless bandits [9], we aim to approximate ν_n via the following relaxation

$$\widetilde{\nu}_{n} = \sup_{\boldsymbol{\pi} \in \Pi} \sum_{t=1}^{n} \mathbb{E} \langle \theta^{*}, X_{t}^{(\boldsymbol{\pi})} \rangle$$
$$= n \|\theta^{*}\|$$
(2)

since \mathcal{A} is the unit ball in \mathbb{R}^d . A natural first objective is thus to quantify the error $\nu_n - \tilde{\nu}_n$ incurred by this approximation. We present the following result which can be considered as a slightly more technical analogue of [8, Proposition 9].

Proposition 1. Let φ_1 be the first φ -mixing coefficient of the process $(\theta_t, t \in \mathbb{N})$. For every $n \ge 1$ it holds that

$$\nu_n - \widetilde{\nu}_n \le 2n\varphi_1 \left\|\theta_t\right\|_{\mathcal{L}_{\infty}}$$

Proof. Consider an arbitrary policy $\pi = (X_t^{(\pi)}, t \in \mathbb{N})$ and any $t \in \mathbb{N}$; note that from this point on the notation X_t will be used to denote $X_t^{(\pi)}$. Let $\tilde{P}_t := P \circ X_t^{-1}$ be the pushforward measure on the action space \mathcal{A} under X_t . Fix an $\epsilon > 0$. As follows from Vitali's covering theorem [11, Theorem 2.8] there exists a set of disjoint closed balls $\{B_i : i \in \mathbb{N}\}$ of radii at most ϵ , that covers the action space \mathcal{A} (i.e. the unit ball in \mathbb{R}^d), such that $\tilde{P}_t(\mathcal{A} \setminus \bigcup_{i \in \mathbb{N}} B_i) = 0$. Note that by assumption $\theta_t \in \mathcal{L}_{\infty}(\Omega; \mathbb{R}^d)$ so that $\|\theta_t\|_{\mathcal{L}_{\infty}} := \sup_{\omega \in \Omega} \|\theta_t(\omega)\|_2 < \infty$. Consider a ball B_i for some $i \in \mathbb{N}$ and denote its center by $\bar{x}_i \in \mathbb{R}^d$. Let $E_i := \{X_t \in B_i\}$ denote the pre-image of B_i under X_t . Since B_i is of radius at most ϵ , it holds that,

$$\mathbb{E}\langle \theta_t, X_t - \bar{x}_i \rangle \mathbb{I}_{B_i}(X_t) \leq \mathbb{E} \sup_{x \in B_i} \langle \theta_t, x - \bar{x}_i \rangle \mathbb{I}_{B_i}(X_t)$$
$$\leq \int_{E_i} \epsilon \|\theta_t\|_2 \, dP$$
$$= \epsilon P(E_i) \|\theta_t\|_{\mathcal{L}_{\infty}}.$$
(3)

Similarly, for $\theta^* = \mathbb{E} \theta_t$ we have,

$$\mathbb{E}\langle \theta^*, X_t - \bar{x}_i \rangle \mathbb{I}_{B_i}(X_t) \le \epsilon P(E_i) \, \|\theta_t\|_{\mathcal{L}_{\infty}} \,. \tag{4}$$

Moreover, noting that \mathcal{A} is the unit ball in \mathbb{R}^d , by Cauchy-Schwarz inequality, for each $x \in \mathcal{A}$ we have,

$$\|\langle \theta_t, x \rangle\|_{\mathcal{L}_{\infty}} = \sup_{\omega \in \Omega} |\langle \theta_t(\omega), x \rangle|$$

$$\leq \sup_{\omega \in \Omega} \|\theta_t(\omega)\|_2$$

$$= \|\theta_t\|_{\mathcal{L}_{\infty}}$$

$$< \infty.$$
(5)

III MAIN RESULTS

Hence, as follows from [5, Theorem 4.4(c2) - vol. I pp. 124] it holds that

$$\frac{\|\mathbb{E}(\langle \theta_t, \bar{x}_i \rangle | \mathcal{F}_{t-1}) - \mathbb{E}\langle \theta_t, \bar{x}_i \rangle \|_{\mathcal{L}_{\infty}}}{\|\langle \theta_t, \bar{x}_i \rangle\|_{\mathcal{L}_{\infty}}} \leq \sup_{Y \in \mathcal{L}_{\infty}(\Omega, \sigma(\theta_t), P)} \frac{\|\mathbb{E}(Y | \mathcal{F}_{t-1}) - \mathbb{E}Y \|_{\mathcal{L}_{\infty}}}{\|Y\|_{\mathcal{L}_{\infty}}}$$
(6)

$$= 2\varphi(\mathcal{F}_{t-1}, \sigma(\theta_t)) \tag{7}$$

$$\leq 2\varphi_1$$
 (8)

where $\mathcal{L}_{\infty}(\Omega, \sigma(\theta_t), P)$ denotes the set of all $\sigma(\theta_t)$ -measurable, real-valued random variables such that $\sup_{\omega \in \Omega} |Y(\omega)| < \infty$ almost surely. We have,

$$\begin{aligned} \left| \mathbb{E} \left(\left(\langle \theta_t, \bar{x}_i \rangle - \langle \theta^*, \bar{x}_i \rangle \right) \mathbb{I}_{B_i}(X_t) \right) \right| \\ &= \left| \mathbb{E} \left(\mathbb{E} \left(\langle \theta_t, \bar{x}_i \rangle \mathbb{I}_{B_i}(X_t) | \mathcal{F}_{t-1} \right) \right) - \mathbb{E} \langle \theta^*, \bar{x}_i \rangle \mathbb{I}_{B_i}(X_t) \right| \\ &= \left| \mathbb{E} \left(\mathbb{I}_{B_i}(X_t) \mathbb{E} \left(\langle \theta_t, \bar{x}_i \rangle | \mathcal{F}_{t-1} \right) \right) - \mathbb{E} \langle \theta^*, \bar{x}_i \rangle \mathbb{I}_{B_i}(X_t) \right| \\ &\leq \mathbb{E} \left(\mathbb{I}_{B_i}(X_t) \left| \mathbb{E} \left(\langle \theta_t, \bar{x}_i \rangle | \mathcal{F}_{t-1} \right) - \mathbb{E} \langle \theta_t, \bar{x}_i \rangle \right| \right) \\ &= \int_{E_i} \left| \mathbb{E} \left(\langle \theta_t, \bar{x}_i \rangle | \mathcal{F}_{t-1} \right) - \mathbb{E} \langle \theta_t, \bar{x}_i \rangle \right| dP \\ &\leq \int_{E_i} \left\| \mathbb{E} \left(\langle \theta_t, \bar{x}_i \rangle | \mathcal{F}_{t-1} \right) - \mathbb{E} \langle \theta_t, \bar{x}_i \rangle \right\|_{\mathcal{L}_{\infty}} dP \\ &= P(E_i) \left\| \mathbb{E} \left(\langle \theta_t, \bar{x}_i \rangle | \mathcal{F}_{t-1} \right) - \mathbb{E} \langle \theta_t, \bar{x}_i \rangle \right\|_{\mathcal{L}_{\infty}} \end{aligned}$$
(9)

where the second equality follows from noting that X_t is \mathcal{F}_{t-1} -measurable, and (9) follows from (5) and (8). Thus,

$$|\mathbb{E} \left(\left(\langle \theta_t, X_t \rangle - \langle \theta^*, X_t \rangle \right) \mathbb{I}_{B_i}(X_t) \right) |$$

$$\leq |\mathbb{E} \left\langle \theta_t, X_t - \bar{x}_i \rangle \mathbb{I}_{B_i}(X_t) \right|$$

$$+ |\mathbb{E} \left\langle \theta^*, X_t - \bar{x}_i \rangle \mathbb{I}_{B_i}(X_t) \right|$$

$$+ |\mathbb{E} \left(\langle \theta_t, \bar{x}_i \rangle - \langle \theta^*, \bar{x}_i \rangle \right) \mathbb{I}_{B_i}(X_t) |$$

$$\leq 2(\epsilon + \varphi_1) P(E_i) \|\theta_t\|_{\mathcal{L}_{\infty}}$$
(10)

where (10) follows from (3), (4) and (9). By (10), noting that the events E_i , $i \in \mathbb{N}$ partition Ω , and by applying the dominated convergence theorem, we have,

$$\mathbb{E}\left(\langle \theta_t, X_t \rangle - \langle \theta^*, X_t \rangle\right) | \\ \leq \sum_{i \in \mathbb{N}} |\mathbb{E}\left((\langle \theta_t, X_t \rangle - \langle \theta^*, X_t \rangle) \mathbb{I}_{B_i}(X_t)\right)|$$
(11)

$$\leq \sum_{i \in \mathbb{N}} 2P(E_i)(\epsilon + \varphi_1) \left\| \theta_t \right\|_{\mathcal{L}_{\infty}}$$
(12)

$$= 2(\epsilon + \varphi_1) \left\| \theta_t \right\|_{\mathcal{L}_{\infty}}.$$
(13)

DRAFT

^{© 2025} IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Finally, since this holds for every ϵ , we obtain,

$$\nu_{n} - \widetilde{\nu}_{n} \leq \sup_{\boldsymbol{\pi} \in \Pi} \sum_{t=1}^{n} |\mathbb{E}(\langle \theta_{t}, X_{t} \rangle - \langle \theta^{*}, X_{t} \rangle)|$$

$$\leq 2n\varphi_{1} \|\theta_{t}\|_{\mathcal{L}_{\infty}}$$
(14)

and the result follows.

Denote by $\mathcal{R}_{\pi}(n)$ the regret with respect to (2) incurred by a policy $\pi = (X_t^{(\pi)}, t \in \mathbb{N})$ after n rounds, i.e.

$$\mathcal{R}_{\boldsymbol{\pi}}(n) := \widetilde{\nu}_n - \sum_{t=1}^n \mathbb{E} \langle \theta_t, X_t^{(\boldsymbol{\pi})} \rangle.$$
(15)

In this paper, we consider a subclass of the problem where the process $(\theta_t, t \in \mathbb{N})$ has an exponential φ -mixing rate, so that there exists some $a_0, \gamma_0 \in (0, \infty)$ such that for all $m \in \mathbb{N}$,

$$\varphi_m \le a e^{-\gamma m}.\tag{16}$$

We focus on the case where a and γ in (16) are known. In fact, knowing the exact values of a and γ is not crucial; an upper bound on a and a lower bound on γ would suffice. For simplicity, we retain the parameters a and γ , treating them as bounds on the true rate parameters. We propose LinMix-UCB, outlined in Algorithms 1 and 2 for the cases of finite and infinite horizon respectively.

Algorithm 1 LinMix-UCB (finite horizon)

Input: horizon *n*; regularization parameter λ ; φ -mixing rate parameters: $a, \gamma \in (0, \infty)$

Specify block-length k given by (17)

```
for m = 0, 1, 2, ..., \lfloor n/k \rfloor do

for \ell = 1, 2, ..., k do

t \leftarrow mk + \ell

if m = 0 then

X_t \leftarrow \mathbf{x}_0 \qquad \qquad \triangleright \mathbf{x}_0 is a fixed unit vector in \mathcal{A}

else

X_t \leftarrow \operatorname{argmax}_{x \in \mathcal{A}} \max_{\theta \in C_{\max\{0,m-1\}}} \langle x, \theta \rangle

Play action X_t to obtain reward Y_t

if \ell = 1 then

Calculate confidence ellipsoid C_m (20)
```

6

III MAIN RESULTS

The proposed algorithm is inspired by such UCB-type approaches as LinUCB and its variants, including LinRel [1] and OFUL [2], all of which are designed for linear bandits in the simpler iid noise setting, see [4, Chapter 19] and references therein. The main challenge in our setting is to devise an exploration-exploitation strategy that is robust against the long-range dependencies in the process $(\theta_t, t \in \mathbb{N})$. We construct confidence ellipsoids around the empirical estimates of θ^* obtained via "near-independent" samples, and similarly to LinUCB and its variants, we rely on the principle of Optimism in the Face of Uncertainty. More specifically, the algorithm works as follows. A finite horizon n is divided into intervals of length

$$k = \max\left\{1, \bar{k}\right\} \tag{17}$$

with \bar{k} defined as

$$\left[\frac{1}{\gamma} \log \left(\frac{6a\gamma n^2}{1 + 4\sqrt{n} \|\theta_t\|_{\mathcal{L}_{\infty}} + \sqrt{\frac{8d \times n \log(n(1 + \frac{n}{\lambda d}))}{\lambda}}}\right)\right]$$

where λ is a regularization parameter used in the estimation step. At every time-step $t = mk+1, m = 0, 1, \dots, \lfloor n/k \rfloor$ which marks the beginning of each interval of length k, the payoffs $Y_s := \langle \theta_s, X_s \rangle$ collected every k-steps at $s = m'k + 1, m' = 0, 1, \dots, \max\{0, m - 1\}$, are used to generate a regularized least-squares estimator θ_m of $\theta^* = \mathbb{E}\theta_t$, and in turn, produce a confidence ellipsoid C_m . That is, for each $m = 0, 1, \dots, \lfloor n/k \rfloor$ we have

$$\widehat{\theta}_{m} :=
\operatorname{argmin}_{\theta \in \Theta} \left(\sum_{\substack{m'=0\\s=m'k+1}}^{\max\{0,m-1\}} (Y_{s} - \langle \theta, X_{s} \rangle)^{2} + \lambda \|\theta\|_{2}^{2} \right)$$
(18)

where the regularisation parameter $\lambda > 0$ ensures a unique solution given by

$$\widehat{\theta}_m = (\lambda I + V_m)^{-1} \sum_{\substack{m'=0\\s=m'k+1}}^{\max\{0,m-1\}} Y_s X_s$$
(19)

with $V_m := \sum_{m'=0}^{\max\{0,m-1\}} X_s X_s^{\top}$ takes values in $\mathbb{R}^{d \times d}$ and I is the identity matrix in $\mathbb{R}^{d \times d}$. This gives rise to the following confidence ellipsoid

$$C_m := \left\{ \theta \in \Theta : \left\| \theta - \widehat{\theta}_m \right\|_{\zeta^2(\lambda I + V_m)}^2 \le b_n \right\}$$
(20)

where $\|x\|_A^2 := x^\top A x$ for $x \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times d}$, $\zeta := 2 \|\theta_t\|_{\mathcal{L}_{\infty}}$, and $b_n > 0$ is chosen such that $\sqrt{b_n}$ is equal to,

$$2\sqrt{\lambda} \|\theta_t\|_{\mathcal{L}_{\infty}} + \sqrt{2\log n + d\log\left(1 + \frac{n}{k_n\lambda d}\right)}.$$
(21)

We are now in a position to analyze the regret of the proposed algorithm.

^{© 2025} IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Theorem 1. Suppose that the stationary φ -mixing process $(\theta_t, t \in \mathbb{N})$ has an exponential mixing rate, so that there exists some $a, \gamma \in (0, \infty)$ such that $\varphi_m \leq ae^{-\gamma m}$ for all $m \in \mathbb{N}$. The regret (with respect to $\tilde{\nu}_n$) of LinMix-UCB (finite horizon) played for $n \geq \left\lceil \frac{3a\gamma\sqrt{\lambda}}{2\sqrt{\lambda}||\theta_t||_{\mathcal{L}_{\infty}} + \sqrt{2}} \right\rceil$ rounds satisfies

$$\frac{\mathcal{R}_{\boldsymbol{\pi}}(n)}{\|\boldsymbol{\theta}_t\|_{\mathcal{L}_{\infty}}} \leq \frac{1}{n} + C\log(n)\sqrt{2dn\log(n(1+\frac{n}{\lambda d}))}$$

where

$$C := \left(\frac{12(\sqrt{2\lambda} + 4\sqrt{2\lambda} \|\theta_t\|_{\mathcal{L}_{\infty}} + 1)}{\gamma\sqrt{2\lambda}}\right),$$

and $\lambda > 0$ is the regularization parameter.

Proof. For a fixed $k \in \mathbb{N}$, consider the sub-sequence θ_{ik+1} , i = 0, 1, 2, ... of the stationary sequence of \mathbb{R}^d -valued random variables θ_t , $t \in \mathbb{N}$. Let U_j , $j \in \mathbb{N}$ be a sequence of iid random variables uniformly distributed over [0, 1] such that each U_j is independent of $\sigma(\{\theta_t : t \in \mathbb{N}\})$. Set $\tilde{\theta}_0 = \theta_1$. As follows from Berbee's coupling lemma [12] - see also [6, Lemma 5.1, pp. 89] - there exists a random variable

$$\widetilde{\theta}_1 = g_1(\widetilde{\theta}_0, \theta_{k+1}, U_1)$$

where g_1 is a measurable function from $\mathbb{R}^d \times \mathbb{R}^d \times [0,1]$ to \mathbb{R}^d such that $\tilde{\theta}_1$ is independent of $\tilde{\theta}_0$, has the same distribution as θ_{k+1} and

$$\Pr(\widetilde{\theta}_1 \neq \theta_{k+1}) = \beta(\sigma(\widetilde{\theta}_0), \sigma(\theta_{k+1}))$$

Similarly, there exists a random variable

$$\widetilde{\theta}_2 = g_2((\widetilde{\theta}_0, \widetilde{\theta}_1), \theta_{2k+1}, U_2)$$

where g_2 is a measurable function from $(\mathbb{R}^d)^2 \times \mathbb{R}^d \times [0,1]$ to \mathbb{R}^d such that $\tilde{\theta}_2$ is independent of $(\tilde{\theta}_0, \tilde{\theta}_1)$, has the same distribution as θ_{2k+1} and

$$\Pr(\widetilde{\theta}_2 \neq \theta_{2k+1}) = \beta(\sigma(\widetilde{\theta}_0, \widetilde{\theta}_1), \sigma(\theta_{2k+1})).$$

Continuing inductively in this way, at each step j = 3, 4, ..., by Berbee's coupling lemma [12], there exists a random variable

$$\widetilde{\theta}_j = g_j((\widetilde{\theta}_0, \widetilde{\theta}_1, \dots, \widetilde{\theta}_{j-1}), \theta_{jk+1}, U_j)$$

where $g_j: (\mathbb{R}^d)^j \times \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$ is a measurable function such that

- 1) $\tilde{\theta}_j$ is independent of $(\tilde{\theta}_0, \tilde{\theta}_1, \dots, \tilde{\theta}_{j-1})$
- 2) $\tilde{\theta}_j$ has the same distribution as θ_j and,

$$\Pr(\widetilde{\theta}_j \neq \theta_j) = \beta(\sigma(\widetilde{\theta}_0, \widetilde{\theta}_1, \dots, \widetilde{\theta}_{j-1}), \sigma(\theta_{jk+1})).$$
(22)

Following a standard argument (see, e.g. [13, Lemma 6]) it can be shown that,

$$\beta(\sigma(\theta_0, \theta_1, \dots, \theta_{j-1}), \sigma(\theta_{jk+1})) \le \beta_k \tag{23}$$

^{© 2025} IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

for all $j \in \mathbb{N}$. The sequence of random variables $\tilde{\theta}_j$, j = 0, 1, 2, ... can be used to construct a "ghost" payoff process $(\bar{\theta}_t, t \in \mathbb{N})$ as follows. Let $\bar{\theta}_{ik+1} = \tilde{\theta}_i$ for all i = 0, 1, 2, ... and take $\bar{\theta}_t$ to be an independent copy of θ_1 for all t = ik + 2, ..., (i + 1)k, i = 0, 1, 2, ... Denote by $\pi := (X_t, t \in \mathbb{N})$ the policy induced by Algorithm 1 when the process $(\theta_t, t \in \mathbb{N})$ is used to generate the payoffs $Y_t := \langle X_t, \theta_t \rangle$. Similarly let $\bar{\pi} := (\bar{X}_t, t \in \mathbb{N})$ be the policy generated by Algorithm 1 when the sequence $(\bar{\theta}_t, t \in \mathbb{N})$ produces the payoffs $\bar{Y}_t := \langle \bar{X}_t, \bar{\theta}_t \rangle$ at each $t \in \mathbb{N}$. For a fixed $n \in \mathbb{N}$, define the event

$$E_n := \{ \exists i \in 0, 1, \dots, (\lfloor n/k \rfloor) - 1 : \theta_{ik+1} \neq \bar{\theta}_{ik+1} \}$$
(24)

and observe that as follows from the above coupling argument, i.e. by (22) and (23), it holds that

$$\Pr(E_n) \le n\beta_k/k. \tag{25}$$

Let $\mathcal{G}_0 = \overline{\mathcal{G}}_0 := \{\emptyset, \Omega\}$. Define the filtrations

$$\mathcal{G}_m := \sigma(\{\theta_{ik+1} : i = 0, 1, \dots, m-1\})$$

and

$$\bar{\mathcal{G}}_m := \sigma(\{\bar{\theta}_{ik+1} : i = 0, 1, \dots, m-1\})$$

for $m = 1, 2, ..., \lfloor n/k \rfloor$. By design, for t = 1, ..., k, the action X_t is set to a pre-specified constant $\mathbf{x}_0 \in \mathcal{A}$ (independent of the data), and is thus simply \mathcal{G}_0 -measurable. Observe that the first confidence ellipsoid C_0 which is generated at t = 1 is not used directly, but only after k steps. For each time-step $t = mk + \ell$ with $m \in 1, ..., \lfloor n/k \rfloor$ and $\ell = 1, 2, ..., k$, the action X_t depends on the confidence ellipsoid $C_{\max\{0,m-1\}}$, which is in turn updated at least k time-steps prior to t. More specifically, X_t is measurable with respect to \mathcal{G}_m . As a result, there exists a measurable function

$$f_t: (\mathbb{R}^d)^m \to \mathcal{A}$$

such that

$$X_t = f_t(\theta_1, \theta_{k+1}, \theta_{2k+1}, \dots, \theta_{(m-1)k+1})$$

In words, f_t is a mathematical representation of Algorithm 1 at time t. Similarly, noting that the same algorithm is applied to $(\bar{\theta}_t, t \in \mathbb{N})$, it holds that

$$\bar{X}_t = f_t(\bar{\theta}_1, \bar{\theta}_{k+1}, \bar{\theta}_{2k+1}, \dots, \bar{\theta}_{(m-1)k+1}).$$

As a result, for each $i = 1, \ldots, \lfloor n/k \rfloor$, we have,

$$Y_{ik+1} \mathbb{I}_{E_n^c} = \langle \theta_{ik+1}, X_{ik+1} \rangle \mathbb{I}_{E_n^c}$$

$$= \langle \theta_{ik+1}, f_{ik+1}(\theta_1, \dots, \theta_{(i-1)k+1}) \rangle \mathbb{I}_{E_n^c}$$

$$= \langle \bar{\theta}_{ik+1}, f_{ik+1}(\bar{\theta}_1, \dots, \bar{\theta}_{(i-1)k+1}) \rangle \mathbb{I}_{E_n^c}$$

$$= \bar{Y}_{ik+1} \mathbb{I}_{E^c}, \qquad (26)$$

III MAIN RESULTS

almost surely. On the other hand, by a simple application of Cauchy-Schwarz and Hölder inequalities, it is straightforward to verify that for each t = 1, ..., n we have,

$$\mathbb{E}|Y_t \mathbb{I}_{E_n}| = \int_{E_n} |\langle \theta_t, X_t \rangle| dP$$

$$\leq P(E_n) \|\theta_t\|_{\mathcal{L}_{\infty}}$$
(27)

and similarly,

$$\mathbb{E}|\bar{Y}_t\mathbb{I}_{E_n}| \le P(E_n) \,\|\theta_t\|_{\mathcal{L}_{\infty}} \,. \tag{28}$$

It follows that

$$\sum_{i=0}^{\lfloor n/k \rfloor} \left| \mathbb{E} Y_{ik+1} - \mathbb{E} \bar{Y}_{ik+1} \right|$$
$$= \sum_{i=0}^{\lfloor n/k \rfloor} \left| \mathbb{E} (Y_{ik+1} \mathbb{I}_{E_n}) - \mathbb{E} (\bar{Y}_{ik+1} \mathbb{I}_{E_n}) \right|$$
(29)

$$\leq 2n \left\|\theta_t\right\|_{\mathcal{L}_{\infty}} P(E_n)/k \tag{30}$$

$$\leq 2n^2 \left\|\theta_t\right\|_{\mathcal{L}_{\infty}} \beta_k / k^2 \tag{31}$$

where (29) follows from (26), (30) follows from (27) and (28), and (31) is due to (25). Next, let us consider the time-steps within each segment. Fix any $t = mk + \ell$ for some $m \in 1, ..., \lfloor n/k \rfloor$ and some $\ell \in 2, ..., k$. It is straightforward to verify that [5, Theorem 4.4(c2) - vol. I pp. 124] can be extended to the case of vector-valued random variables, by an analogous argument based on simple functions where absolute values of constants are replaced by norms. This leads to,

$$\left\| \mathbb{E}(\theta_t | \bar{\mathcal{G}}_m \vee \mathcal{G}_m) - \mathbb{E}\theta_t \right\|_{\mathcal{L}_{\infty}}$$
(32)

$$\leq 2\varphi(\bar{\mathcal{G}}_m \vee \mathcal{G}_m, \sigma(\theta_t)) \left\|\theta_t\right\|_{\mathcal{L}_{\infty}}$$
(33)

$$\leq 2\varphi_k \left\|\theta_t\right\|_{\mathcal{L}_{\infty}}.\tag{34}$$

Define the event

$$U_m := \{ \exists i \in 0, 1, \dots, m-1 : \theta_{ik+1} \neq \bar{\theta}_{ik+1} \}.$$

Observe that as with (24) we have

$$\Pr(U_m) \le m\beta_k \tag{35}$$

so that similarly to (27), it holds that,

$$\max\{\mathbb{E}|Y_t\mathbb{I}_{U_m}|, \mathbb{E}|\bar{Y}_t\mathbb{I}_{U_m}|\} \le m\beta_k \|\theta_t\|_{\mathcal{L}_{\infty}}.$$
(36)

III MAIN RESULTS

11

for $t = mk + \ell$ with some $m \in 1, \dots, \lfloor n/k \rfloor$ and $\ell \in 2, \dots, k$ fixed above. Moreover,

$$\mathbb{E}(\langle \bar{\theta}_t, \bar{X}_t \rangle \mathbb{I}_{U_m^c}) = \mathbb{E}(\mathbb{I}_{U_m^c} \mathbb{E}(\langle \bar{\theta}_t, X_t \rangle | \bar{\mathcal{G}}_m \lor \mathcal{G}_m))$$
(37)

$$= \mathbb{E}(\mathbb{I}_{U_m^c} \langle X_t, \mathbb{E}(\bar{\theta}_t | \bar{\mathcal{G}}_m \lor \mathcal{G}_m) \rangle)$$
(38)

$$= \mathbb{E}(\mathbb{I}_{U_m^c} \langle X_t, \mathbb{E} | \theta_t \rangle) \tag{39}$$

where (37) follows from the definition of U_m^c and the fact that $\mathbb{I}_{U_m^c}$ is measurable with respect to $\overline{\mathcal{G}}_m \vee \mathcal{G}_m$, and (38) follows from noting that X_t is measurable with respect \mathcal{G}_t . Finally, (39) is due to the stationarity of θ_t together with the fact that by construction $\overline{\theta}_t$ is an independent copy of θ_1 for this choice of t (within the segments). Similarly, we have,

$$\mathbb{E}(\langle \theta_t, X_t \rangle \mathbb{I}_{U_m^c}) = \mathbb{E}(\mathbb{I}_{U_m^c} \mathbb{E}(\langle \theta_t, X_t \rangle | \bar{\mathcal{G}}_m \lor \mathcal{G}_m))$$
(40)

$$= \mathbb{E}(\mathbb{I}_{U_m^c} \langle X_t, \mathbb{E}(\theta_t | \bar{\mathcal{G}}_m \lor \mathcal{G}_m) \rangle).$$
(41)

Hence, for any $m \in 1, \ldots, \lfloor n/k \rfloor$ and $t = mk + \ell$ for some $\ell \in 2, \ldots, k$ we have,

$$\mathbb{E}((\langle \theta_t, X_t \rangle - \mathbb{E}\langle \bar{\theta}_t, \bar{X}_t \rangle) \mathbb{I}_{U_m^c})|$$

$$\leq \mathbb{E}(\mathbb{I}_{U_m^c} \langle X_t, |\mathbb{E}(\theta_t | \bar{\mathcal{G}}_m \lor \mathcal{G}_m) - \mathbb{E}|\theta_t|\rangle))$$
(42)

$$= \int_{U_m^c} \langle X_t, |\mathbb{E}(\theta_t | \bar{\mathcal{G}}_m \vee \mathcal{G}_m) - \mathbb{E} | \theta_t | \rangle dP$$
(43)

$$\leq \int_{U_m^c} \|X_t\|_2 \left\| \mathbb{E}(\theta_t | \bar{\mathcal{G}}_m \vee \mathcal{G}_m) - \mathbb{E} \theta_t \right\|_2 dP \tag{44}$$

$$\leq P(U_m^c) \left\| \mathbb{E}(\theta_t | \bar{\mathcal{G}}_m \vee \mathcal{G}_m) - \mathbb{E} \; \theta_t \right\|_{\mathcal{L}_{\infty}} \tag{45}$$

$$\leq 2\varphi_k \left\|\theta_t\right\|_{\mathcal{L}_{\infty}} \tag{46}$$

where (42) follows from (39) and (41); (44) and (45) follow from Cauchy-Schwarz and Hölder inequalities respectively, and (46) follows from (32). We obtain,

$$\sum_{m=1}^{\lfloor n/k \rfloor} \sum_{\ell=2}^{k} |\mathbb{E}(Y_{mk+\ell} - \bar{Y}_{mk+\ell})|$$

$$= \sum_{m=0}^{\lfloor n/k \rfloor} \sum_{\ell=2}^{k} |\mathbb{E}((Y_{mk+\ell} - \bar{Y}_{mk+\ell})\mathbb{I}_{U_m^c})|$$

$$+ |\mathbb{E}((Y_{mk+\ell} - \bar{Y}_{mk+\ell})\mathbb{I}_{U_m})|$$
(47)

$$\leq 2n\varphi_k \left\|\theta_t\right\|_{\mathcal{L}_{\infty}} + 2n^2\beta_k \left\|\theta_t\right\|_{\mathcal{L}_{\infty}} \tag{48}$$

$$\leq 4n^2 \varphi_k \left\| \theta_t \right\|_{\mathcal{L}_{\infty}} \tag{49}$$

where (47) follows from noting that by design, $\mathbb{E}\bar{Y}_t = \mathbb{E}Y_t$ for all $t \in 1, ..., k$ as the algorithm sets $X_t = \mathbf{x}_0$ for some constant $\mathbf{x}_0 \in \mathcal{A}$ independent of the data, (48) follows from (36) and (46), and (49) is due to the fact that in

III MAIN RESULTS

general $\beta_k \leq \varphi_k$ for all $k \in \mathbb{N}$ [5, Proposition 3.11 - vol. I pp. 76]. Therefore, by (31) and (49) we obtain

$$\begin{aligned} \left| \mathcal{R}_{\boldsymbol{\pi}(n)} - \mathcal{R}_{\bar{\boldsymbol{\pi}}}(n) \right| \\ &\leq \sum_{i=0}^{\lfloor n/k \rfloor} \left| \mathbb{E} Y_{ik+1} - \mathbb{E} \bar{Y}_{ik+1} \right| \\ &+ \sum_{m=0}^{\lfloor n/k \rfloor} \sum_{\ell=2}^{k} \left| \mathbb{E} Y_{mk+\ell} - \mathbb{E} \bar{Y}_{mk+\ell} \right| \\ &\leq 6n^2 \varphi_k \left\| \theta_t \right\|_{\mathcal{L}_{\infty}}. \end{aligned}$$
(50)

It remains to calculate the regret of $\bar{\pi} = \{\bar{X}_t : t \in 1, ..., n\}$. The payoff $\bar{Y}_t = \langle \bar{\theta}_t, \bar{X}_t \rangle$ obtained via the policy $\bar{\pi}$ at time-step t can be decomposed as

$$\bar{Y}_t = \langle \theta^*, \bar{X}_t \rangle + \eta_t \tag{51}$$

where

$$\eta_t := \langle \bar{\theta}_t - \theta^*, \bar{X}_t \rangle. \tag{52}$$

For each $m = 0, 1, \ldots, \lfloor n/k \rfloor$, set

$$S_m = \sum_{i=0}^m \eta_{ik+1} \bar{X}_{ik+1}$$

define

$$V_m := \sum_{\substack{m'=0\\s=m'k+1}}^m \bar{X}_s \bar{X}_s^{\mathsf{T}}$$

and let $I \in \mathbb{R}^{d \times d}$ be the identity matrix. Consider the estimator

$$\widehat{\theta}_m := (\lambda I + V_m)^{-1} \sum_{\substack{m'=0\\s=m'k+1}}^m \bar{Y}_s \bar{X}_s$$

and observe that

$$\widehat{\theta}_m = (\lambda I + V_m)^{-1} \left(S_m + \sum_{\substack{m'=0\\s=m'k+1}}^m \bar{X}_s \bar{X}_s^\top \theta^* \right)$$
(53)

$$= (\lambda I + V_m)^{-1} \left(S_m + V_m \theta^* \right).$$
(54)

Let $\zeta := 2 \|\theta_t\|_{\mathcal{L}_{\infty}}$. We can write,

$$\begin{aligned} \left\| \widehat{\theta}_{m} - \theta^{*} \right\|_{\zeta^{2}(\lambda I + V_{m})} \\ &= \left\| (\lambda I + V_{m})^{-1} \left(S_{m} + V_{m} \theta^{*} \right) - \theta^{*} \right\|_{\zeta^{2}(\lambda I + V_{m})} \\ &\leq \left\| S_{m} \right\|_{\zeta^{2}(\lambda I + V_{m})^{-1}} \\ &+ \zeta \lambda^{1/2} (\theta^{*\top} (I - (\lambda I + V_{m})^{-1} V_{m}) \theta^{*})^{1/2} \\ &= \left\| S_{m} \right\|_{\zeta^{2}(\lambda I + V_{m})^{-1}} + \zeta \lambda (\theta^{*\top} (\lambda I + V_{m})^{-1} \theta^{*})^{1/2} \\ &\leq \left\| S_{m} \right\|_{\zeta^{2}(\lambda I + V_{m})^{-1}} + \zeta \lambda^{1/2} \left\| \theta^{*} \right\|_{2} \end{aligned}$$
(55)

where (55) follows from noting that V_m is positive semi-definite and Löwner matrix order is reversed through inversion, so that

$$\theta^{* \top} (\lambda I + V_m)^{-1} \theta^* \le \theta^{* \top} (\lambda I)^{-1} \theta^* = \lambda^{-1} \|\theta^*\|_2^2.$$

Observe that \bar{X}_t for t = mk + 1, $m = 0, 1, ..., \lfloor n/k \rfloor$ is $\bar{\mathcal{G}}_m$ -measurable, and that by construction $\bar{\theta}_{ik+1}$ for i = 0, 1, ..., m are iid. Thus,

$$\mathbb{E}(\eta_t) = \mathbb{E}(\langle \bar{X}_t, \mathbb{E}(\theta^* - \theta_t | \bar{\mathcal{G}}_m) \rangle) = 0.$$

Furthermore, it is straightforward to verify that by Cauchy-Schwarz inequality and noting that X_t takes values in the unit ball, η_t is ζ -subGaussian, i.e. for all $\alpha \in \mathbb{R}$ and every $m = 0, 1, \ldots, \lfloor n/k \rfloor$ and t = mk + 1 we have, $\mathbb{E}(e^{\alpha \eta_t} | \bar{\mathcal{G}}_m)) \leq e^{\alpha^2 \zeta^2/2}$ almost surely. In particular,

$$\mathbb{E}(\exp\{\langle x, X_t \rangle \eta_t\} | \bar{\mathcal{G}}_m)) \\
\leq \exp\{\langle x, X_t \rangle^2 \zeta^2 / 2\} \\
= \exp\left\{\frac{\zeta^2 \|x\|_{X_t X_t^\top}^2}{2}\right\}$$
(56)

almost surely for all $x \in \mathbb{R}^d$. Define

$$M_m(x) := \exp\{\langle x, S_m \rangle - \frac{\zeta^2 \|x\|_{V_m}^2}{2}\}$$

for $x \in \mathbb{R}^d$ and $m = 0, 1, \dots, \lfloor n/k \rfloor$. We have

$$\mathbb{E}(M_m(x)|\mathcal{G}_m) = M_{m-1}(x) \exp\left\{-\frac{\zeta^2}{2} \|x\|_{\bar{X}_{mk+1}\bar{X}_{mk+1}}^2\right\} \times \mathbb{E}\left(\exp\left\{\eta_{mk+1}\langle x, \bar{X}_{mk+1}\rangle\right\} \left|\bar{\mathcal{G}}_m\right)$$
(57)

$$\leq M_{m-1}(x) \tag{58}$$

^{© 2025} IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

III MAIN RESULTS

where (57) follows from the fact that \bar{X}_{mk+1} is $\bar{\mathcal{G}}_m$ -measurable, and (58) follows from (56). Moreover, by (56) and $\bar{\mathcal{G}}_0$ -measurability of \bar{X}_1 , for every $x \in \mathbb{R}^d$ it holds that

$$\mathbb{E}(M_0(x)) = \mathbb{E}\left(-\frac{\zeta^2 \|x\|_{\bar{X}_1\bar{X}_1^{\top}}^2}{2} \mathbb{E}\left(\exp\left\{\langle x, \bar{X}_1 \rangle \eta_1\right\} \left| \bar{\mathcal{G}}_0 \right)\right) \le 1.$$
(59)

Let $W : \Omega \to \mathbb{R}^d$ be a *d*-dimensional Gaussian random vector with mean $\mathbf{0} \in \mathbb{R}^d$ and covariance matrix $(\zeta^2 \lambda)^{-1} I \in \mathbb{R}^{d \times d}$; denote by P_W its distribution on \mathbb{R}^d . Define

$$\widetilde{M}_m := \int_{\mathbb{R}^d} M_m(x) dP_W(x) \tag{60}$$

for each $m \in 0, 1, \ldots, \lfloor n/k \rfloor$. Observe that by (59) and Fubini's theorem we have

$$\mathbb{E}\widetilde{M}_{0} = \mathbb{E}\left(\int_{\mathbb{R}^{d}} M_{0}(x)dP_{W}(x)\right)$$
$$= \int_{\mathbb{R}^{d}} \mathbb{E}M_{0}(x)dP_{W}(x)$$
$$\leq 1$$
(61)

Furthermore, by completing the square in the integrand, we can write

$$\widetilde{M}_{m} = \exp\left\{\frac{1}{2} \left\|S_{m}\right\|_{\zeta^{2}(\lambda I + V_{m})^{-1}}^{2}\right\} \sqrt{\frac{\lambda^{d}}{\det(\lambda I + V_{m})}}$$
(62)

On the other hand, by Fubini's theorem together with (58), we have that \widetilde{M}_m is a non-negative super-martingale, i.e.

$$\mathbb{E}(\widetilde{M}_m | \bar{\mathcal{G}}_m) = \int_{\mathbb{R}^d} \mathbb{E}(M_m(x) | \bar{\mathcal{G}}_m) dP_W$$

$$\leq \int_{\mathbb{R}^d} M_{m-1}(x)$$

$$= \widetilde{M}_{m-1}.$$
 (63)

As a result, by Doob's maximal inequality (see, e.g. [14, Theorem 7.3.1 - pp. 132]) for every $\delta > 0$ it holds that

$$\Pr\left(\sup_{m\in\mathbb{N}}\log\widetilde{M}_{m}\geq\log(1/\delta)\right)$$
$$=\Pr\left(\sup_{m\in\mathbb{N}}\widetilde{M}_{m}\geq\frac{1}{\delta}\right)$$
$$\leq\delta\mathbb{E}\widetilde{M}_{0}$$
(64)

$$\leq \delta$$
 (65)

^{© 2025} IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

where the last inequality follows from (61). Consider the event E defined as

$$E := \left\{ \exists m : \|S_m\|_{\zeta^2(\lambda I + V_m)^{-1}}^2 \\ \ge 2 \log\left(\frac{1}{\delta}\right) + \log\left(\frac{\det(\lambda I + V_m)}{\lambda^d}\right) \right\}$$

By (62) and (64), we have

$$\Pr\left(E\right) \le \delta. \tag{66}$$

Define b_n^δ such that

$$\begin{split} \sqrt{b_n^{\delta}} &:= 2\sqrt{\lambda} \, \|\theta_t\|_{\mathcal{L}_{\infty}} \\ &+ \sqrt{2\log\left(\frac{1}{\delta}\right) + d\log\left(1 + \frac{n}{k\lambda d}\right)} \end{split}$$

and let

$$C_m := \left\{ \theta \in \Theta : \left\| \theta - \widehat{\theta}_m \right\|_{\zeta^2(\lambda I + V_m)}^2 \le b_n^{\delta} \right\}.$$
(67)

By (55) and (66), with probability at least $1 - \delta$ it holds that,

$$\begin{aligned} \left\| \widehat{\theta}_{m} - \theta^{*} \right\|_{\zeta^{2}(\lambda I + V_{m})} \\ &\leq \zeta \sqrt{\lambda} + \sqrt{2 \log\left(\frac{1}{\delta}\right) + \log\left(\frac{\det(\lambda I + V_{m})}{\lambda^{d}}\right)} \\ &\leq b_{n}^{\delta} \end{aligned}$$
(68)

where the second inequality follows from the definition of ζ as well as from [4, Equation 20.9, pp. 261]. Then, it immediately follows that

$$\Pr(\{\exists m : \theta^* \notin C_m\}) \le \delta.$$
(69)

Consider the instantaneous regret

$$r_{mk+1} := \langle \theta^*, \bar{X}^*_{mk+1} - \bar{X}_{mk+1} \rangle$$

of $\bar{\pi}$ for $m = 1, \dots, \lfloor n/k \rfloor - 1$, where \bar{X}_m^* is an optimal action at mk + 1 so that

$$\bar{X}_m^* \in \operatorname*{argmax}_{x \in C_{m-1}} \langle \theta^*, x \rangle$$

almost surely. Let us recall that the algorithm selects

$$\bar{X}_{mk+1} \in \operatorname*{argmax}_{x \in \mathcal{A}} \max_{\theta \in C_{\max\{0,m-1\}}} \langle \theta, x \rangle.$$

With probability at least $1 - \delta$ we have,

$$\langle \theta^*, \bar{X}^*_{mk+1} \rangle \le \max_{\theta \in C_{\max\{0, m-1\}}} \langle \theta, \bar{X}^*_{mk+1} \rangle$$
(70)

$$\leq \max_{\theta \in C_{\max\{0,m-1\}}} \langle \theta, \bar{X}_{mk+1} \rangle.$$
(71)

^{© 2025} IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fix some

$$\bar{\theta}_{mk+1} \in \operatorname*{argmax}_{\theta \in C_{\max\{0,m-1\}}} \langle \theta, \bar{X}_{mk+1} \rangle$$

With probability at least $1 - \delta$ it holds that,

$$r_{mk+1}$$

$$\leq \langle \bar{\theta}_{mk+1} - \theta^*, \bar{X}_{mk+1} \rangle$$

$$\leq \langle \bar{\theta}_{mk+1} - \theta^*, \bar{\theta}_{mk+1} - \theta^* \rangle^{1/2} \langle \bar{X}_{mk+1}, \bar{X}_{mk+1} \rangle^{1/2}$$

$$\leq \| \bar{\theta}_{mk+1} - \theta^* \|_{\zeta^2(\lambda I + V_{\max\{0, m-1\}})}$$

$$\times \| \bar{X}_{mk+1} \|_{\zeta^2(\lambda I + V_{\max\{0, m-1\}})^{-1}}$$

$$\leq \sqrt{b_n^{\delta}} \times \zeta \lambda^{-1/2} \| \bar{X}_{mk+1} \|_2$$

$$\leq \zeta \sqrt{\frac{b_n^{\delta}}{\lambda}}$$
(72)

where in much the same way as with (55), (72) follows from noting that, V_m is positive semi-definite so the matrix order is reversed through inversion, i.e.

$$x^{\top} (\lambda I + V_m)^{-1} x \le x^{\top} (\lambda I)^{-1} x$$

for all $x \in \mathbb{R}^d$. It follows that

$$\sum_{m=1}^{\lfloor n/k \rfloor - 1} r_{mk+1} \leq \sqrt{\frac{n}{k} \sum_{m=1}^{\lfloor n/k \rfloor - 1} r_{mk+1}^2} \\ \leq 2 \|\theta_t\|_{\mathcal{L}_{\infty}} \sqrt{\frac{nb_n^{\delta}}{k\lambda}}$$
(73)

which in turn yields

$$\mathcal{R}_{\bar{\pi}}(n) \leq (1-\delta)k\left(\|\theta_t\|_{\mathcal{L}_{\infty}} + \sum_{m=1}^{\lfloor n/k \rfloor - 1} \mathbb{E}r_{mk+1}\right) + \delta \|\theta_t\|_{\mathcal{L}_{\infty}} \leq \|\theta_t\|_{\mathcal{L}_{\infty}} \left((1-\delta)k\left(1 + 2\sqrt{\frac{nb_n^{\delta}}{k\lambda}}\right) + \delta\right)$$
(74)

By (50) and (74), taking $\delta = 1/n$, and noting that $\varphi_k \leq a e^{-\gamma k}$ for some $a, \gamma \in (0, \infty)$, we have,

$$\frac{\mathcal{R}_{\boldsymbol{\pi}}(n)}{\|\boldsymbol{\theta}_t\|_{\mathcal{L}_{\infty}}} \leq \frac{1}{n} + 6n^2 a e^{-\gamma k} + k(1 + 4\sqrt{n} \|\boldsymbol{\theta}_t\|_{\mathcal{L}_{\infty}}) + k\sqrt{\frac{8dn\log(n(1 + \frac{n}{\lambda d}))}{\lambda}}$$
(75)

Optimizing (75) for k we obtain k^* given by

$$\left[\log\left(\frac{6a\gamma n^2}{1+4\sqrt{n}\left\|\theta_t\right\|_{\mathcal{L}_{\infty}}+\sqrt{\frac{8dn\log(n(1+\frac{n}{\lambda d}))}{\lambda}}}\right)^{1/\gamma}\right]$$
(76)

For
$$n \ge \left| \frac{3a\gamma\sqrt{\lambda}}{2\sqrt{\lambda}\|\theta_t\|_{\mathcal{L}_{\infty}} + \sqrt{2}} \right|$$
 and $k = \max\{1, k^\star\}$ we have,

$$\begin{aligned} \frac{\mathcal{R}_{\pi}(n)}{\|\theta_t\|_{\mathcal{L}_{\infty}}} \\ &\le \frac{1}{n} + \left(\frac{12(\sqrt{2\lambda} + 4\sqrt{2\lambda}\|\theta_t\|_{\mathcal{L}_{\infty}} + 1)}{\gamma\sqrt{2\lambda}} \right) \\ &\times \sqrt{2dn\log(n(1 + \frac{n}{\lambda d}))}\log(n). \end{aligned}$$

Algorithm 2 LinMix-UCB (∞ - horizon)

Input: regularization parameter λ ; φ -mixing rate parameters: $a, \gamma \in (0, \infty)$

$$\begin{split} n_0 \leftarrow \max \left\{ 1, \left\lceil \frac{3a\gamma\sqrt{\lambda}}{2\sqrt{\lambda} \|\theta_t\|_{\mathcal{L}_{\infty}} + \sqrt{2}} \right\rceil \right\} \\ \text{for } i = 0, 1, 2, \dots \text{ do} \\ n_i \leftarrow 2^i n_0 \\ \text{Run Algorithm1}(n_i, \lambda, a, \gamma) \text{ from } t = (2^i - 1)n_0 + 1 \text{ to } t = (2^{i+1} - 1)n_0 \end{split}$$

Algorithm 1 can be turned into an infinite-horizon strategy using a classical doubling-trick. The procedure is outlined in Algorithm 2 below. As in the finite-horizon setting, the algorithm aims to minimize the regret with respect to (2), in the case where the φ -mixing coefficients of the process (θ_t , $t \in \mathbb{N}$) satisfy

$$\varphi_m \le a e^{-\gamma m}$$

for some fixed $a, \gamma \in (0, \infty)$ and all $m \in \mathbb{N}$.

The algorithm works as follows. At every round i = 0, 1, 2, ... a horizon is determined as

$$n_i = 2^i n_0$$

with

$$n_0 := \max\left\{1, \left\lceil \frac{3a\gamma\sqrt{\lambda}}{2\sqrt{\lambda} \|\theta_t\|_{\mathcal{L}_{\infty}} + \sqrt{2}} \right\rceil\right\}$$

and the algorithm plays the finite-horizon strategy specified in Algorithm 1 from $t = \sum_{j=0}^{i-1} n_j$ to $t = \sum_{j=0}^{i} n_j$. The regret of this algorithm is given in Theorem 2.

IV OUTLOOK

Theorem 2. Suppose, as in Theorem 1, that there exist $a, \gamma \in (0, \infty)$ such that φ -mixing coefficients of the stationary process $(\theta_t, t \in \mathbb{N})$ satisfy $\varphi_m \leq ae^{-\gamma m}$ for all $m \in \mathbb{N}$. Then, the regret (with respect to $\tilde{\nu}_n$) of LinMix-UCB (infinite horizon) after n rounds of play satisfies

$$\begin{aligned} \frac{\mathcal{R}_{\pi}(n)}{2 \, \|\theta_t\|_{\mathcal{L}_{\infty}}} \\ &\leq n_0 + C(\log_2(n+1)+1) \log(2(n+1)) \\ &\qquad \times \sqrt{(n+1)d \times \log\left(2(n+1)(1+\frac{2(n+1)}{\lambda d})\right)} \end{aligned}$$
where $C := \left(\frac{12(\sqrt{2\lambda}+4\sqrt{2\lambda}\|\theta_t\|_{\mathcal{L}_{\infty}}+1)}{\gamma\sqrt{2\lambda}}\right)$, and
$$n_0 := \max\left\{1, \left\lceil \frac{3a\gamma\sqrt{\lambda}}{2\sqrt{\lambda}\|\theta_t\|_{\mathcal{L}_{\infty}}} + \sqrt{2}\right\rceil\right\}$$

and $\lambda > 0$ is the regularization parameter.

Proof. For $n \in \mathbb{N}$, let

$$j(n) := \min\{i \in \mathbb{N} : \sum_{i=0}^{i} n_i \ge n\}.$$

Recall that the algorithm plays the finite-horizon strategy of Algorithm 1 during non-overlapping intervals of length $n_i = 2^i n_0, i = 0, 1, 2, ...$ with

$$n_0 := \max\left\{1, \left\lceil \frac{3a\gamma\sqrt{\lambda}}{2\sqrt{\lambda} \|\theta_t\|_{\mathcal{L}_{\infty}} + \sqrt{2}} \right\rceil\right\}.$$

By Theorem 1 and that

$$\sum_{i=0}^{j(n)} \frac{1}{n_i} \le n_0 \sum_{i=0}^{\infty} 2^{-i} \le 2n_0,$$

we have the following upper-bound on $\frac{\mathcal{R}_{\pi}(n)}{\|\theta_t\|_{\mathcal{L}_{\infty}}}$,

$$2n_0 + C \sum_{i=0}^{j(n)} \log(n_i) \sqrt{2dn_i \log(n_i(1 + \frac{n_i}{\lambda d}))}$$
(77)

with the constant C as given in the theorem statement. The result follows from (77), and the fact that as follows from the definition of j(n) we have,

$$\sum_{i=0}^{j(n)} n_i = n_0(2^{j(n)+1} - 1) \ge n$$

 $j(n) = \left\lceil \log_2(\frac{n}{n_0} + 1) \right\rceil$

so that

and $2^{j(n)} \le 2(n+1)$.

IV OUTLOOK

IV. OUTLOOK

We have formulated a generalization of both the classical linear bandits with iid noise, and the finite-armed restless bandits. In the problem that we have considered, an unknown \mathbb{R}^d -valued stationary φ -mixing sequence of parameters $(\theta_t, t \in \mathbb{N})$ gives rise to the payoffs. We have provided an approximation of the optimal restless linear bandit strategy via a UCB-type algorithm, in the case where the process $(\theta_t, t \in \mathbb{N})$ has an exponential mixing rate. The regret of the proposed algorithm, namely LinMix-UCB, with respect a more relaxed oracle which always plays a multiple of $\mathbb{E}\theta_t$, is shown to be

$$\mathcal{O}\left(\sqrt{dn\operatorname{polylog}(n)}\right).$$

Our results differ from that of [8] which tackles the (simpler) finite-armed restless φ -mixing bandit problem, in that they do not require an exponential φ -mixing rate in order to ensure an $\mathcal{O}(\log n)$ regret with respect to the highest stationary mean in their setting. With only a finite number of arms to play, they are able to base their approach on a Hoeffding-type inequality for φ -mixing processes. However, this does not extend to our linear bandit framework. A natural open problem is the derivation of a lower-bound on the regret with respect to ν_n (or with respect to the best switching strategy in the finite-armed setting of [8]).

A. Knowledge of the mixing rates.

Our algorithms require (bounds on) the true φ mixing rate parameters. Although this assumption is standard in time-series analysis, an intriguing objective would be to relax this assumption and infer the mixing parameters while maximizing the expected cumulative payoff. However, for reasons outlined below, this is a challenging endeavor that is beyond the scope of the present paper.

The problem of estimating the mixing coefficients of a process from its sample-paths has only recently garnered attention, and the results so far concern the full-information setting. For example, [15] have proposed strongly consistent estimators for the α and β mixing coefficients of a stationary ergodic process. Their results are necessarily asymptotic, as it is provably impossible to obtain rates of convergence for empirical measures in this general class of processes. However, since finite-time analysis is crucial in a bandit problem, convergence rates are required for the estimators to be effectively deployed as part of a bandit strategy. On the other hand, for the more restrictive class of geometrically ergodic Markov chains, convergence rates for β -mixing estimators can be achieved under density conditions or when the state space is finite [13], [16]. Furthermore, the existing estimators are designed for fully observed sample-paths and cannot readily provide estimates in the bandit context considered in the present paper where the process ($\theta_t, t \in \mathbb{N}$) is only partially observed.

Estimating the mixing coefficients while playing a restless bandit strategy requires more care compared to estimation from a fully observed sample-path. As demonstrated in [8, Example 1], in this framework, a policy can introduce strong couplings between past and future payoffs, resulting in a payoff sequence with a completely different dependency structure than that of the original process.

IV OUTLOOK

Finally, estimating φ -mixing coefficients is significantly more challenging than estimating β -mixing coefficients. A key challenge in estimating φ_m lies in conditioning on potentially rare events with small probabilities. To the best of our knowledge, no estimator for φ_m exists, even in the full-information setting.

B. Towards a relaxation.

In light of the challenges in consistently estimating φ_m , one might consider incorporating a sequential hypothesis test into Algorithm 2 to determine (at least asymptotically) whether φ_m is indeed upper bounded by $ae^{-\gamma m}$, without directly estimating φ_m . Noting that, in general, $\beta_m \leq \varphi_m$, $m \in \mathbb{N}$ (see, e.g. [5]), and under some mild assumptions such as the summability of the φ -mixing coefficients, one may be able to adopt the asymptotically consistent hypothesis test for the β -mixing rate from [15], which is based on estimates of β_m rather than φ_m . In order to use this test as part of a bandit strategy, the Type I and Type II errors of the test would need to be controlled; this can be done if an upper-bound on $\sum_{m \in \mathbb{N}} \varphi_m$ is known and using an appropriate concentration bound, such as [6, Corollary 2.1]. As a result, we conjecture that Algorithm 2 can be modified so that at each $i \in \mathbb{N}$, some $\sqrt{n_i}$ samples are allocated to test the β -mixing rate. Recall that n_i , $i \in \mathbb{N}$ is an increasing sequence, with each element representing the length of the i^{th} batch on which the finite-horizon algorithm is executed. The modified algorithm would then continue to apply the bandit strategy on $n_i - \sqrt{n_i}$ samples, operating under the null hypothesis that $\varphi_m \leq ae^{-\gamma m}$. The process would halt once the null hypothesis is rejected. Maintaining the number of samples per test at the order of $\sqrt{n_i}$ ensures that the algorithm's regret remains unaffected. Although this roadmap appears promising, it requires thorough exploration to assess its feasibility. We defer this investigation to future work.

REFERENCES

- P. Auer, "Using confidence bounds for exploitation-exploration trade-offs," *Journal of Machine Learning Research*, vol. 3, no. Nov, pp. 397–422, 2002.
- [2] Y. Abbasi-yadkori, D. Pál, and C. Szepesvári, "Improved algorithms for linear stochastic bandits," in Advances in Neural Information Processing Systems, vol. 24, 2011.
- [3] S. Bubeck and N. Cesa-Bianchi, "Regret analysis of stochastic and nonstochastic multi-armed bandit problems," *Foundations and Trends in Machine Learning*, vol. 5, no. 1, pp. 1–122, 2012.
- [4] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge University Press, 2020.
- [5] R. C. Bradley, Introduction to Strong Mixing Conditions. Kendrick Press, 2007, vol. 1,2, 3.
- [6] E. Rio, Asymptotic theory of weakly dependent random processes. Springer, 2017, vol. 80.
- [7] R. Ortner, D. Ryabko, P. Auer, and R. Munos, "Regret bounds for restless markov bandits," *Theoretical Computer Science*, vol. 558, pp. 62–76, 2014.
- [8] S. Grünewälder and A. Khaleghi, "Approximations of the restless bandit problem," *The Journal of Machine Learning Research*, vol. 20, no. 1, pp. 514–550, 2019.

- [9] C. H. Papadimitriou and J. N. Tsitsiklis, "The complexity of optimal queuing network control," *Mathematics of Operations Research*, vol. 24, no. 2, pp. 293–305, 1999.
- [10] Q. Chen, N. Golrezaei, and D. Bouneffouf, "Non-stationary bandits with auto-regressive temporal dependency," Advances in Neural Information Processing Systems, vol. 36, pp. 7895–7929, 2023.
- [11] P. Mattila, Geometry of sets and measures in Euclidean spaces: fractals and rectifiability. Cambridge university press, 1999, no. 44.
- [12] H. C. Berbee, "Random walks with stationary increments and renewal theory," Mathematisch Centrum, 1979.
- [13] S. Grünewälder and A. Khaleghi, "Estimating the mixing coefficients of geometrically ergodic markov processes," *arXiv preprint* arXiv:2402.07296, 2024.
- [14] A. N. Shiryaev, Probability-2. Springer, 2019, vol. 95.
- [15] A. Khaleghi and G. Lugosi, "Inferring the mixing properties of a stationary ergodic process from a single sample-path," *IEEE Transactions on Information Theory*, 2023.
- [16] G. Wolfer and P. Alquier, "Optimistic estimation of convergence in markov chains with the average-mixing time," *arXiv preprint* arXiv:2402.10506, 2024.