
Theoretical Computer Science 620 (2016) 119–133
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Nonparametric multiple change point estimation in highly 

dependent time series

Azadeh Khaleghi a,∗, Daniil Ryabko b,∗
a Department of Mathematics & Statistics, Lancaster University, UK
b INRIA Lille, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 11 November 2015

Keywords:
Change point analysis
Stationary ergodic time series
Unsupervised learning
Consistency

Given a heterogeneous time-series sample, the objective is to find points in time, called 
change points, where the probability distribution generating the data has changed. The data 
are assumed to have been generated by arbitrary unknown stationary ergodic distributions. 
No modelling, independence or mixing assumptions are made. A novel, computationally 
efficient, nonparametric method is proposed, and is shown to be asymptotically consistent 
in this general framework. The theoretical results are complemented with experimental 
evaluations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Change point estimation is a classical problem in mathematical statistics [1,2] which, with its broad range of applications 
in learning problems, has started to gain attention in the machine learning community. The problem can be introduced as 
follows. A given sequence

x := X1, . . . , X�nθ1�, X�nθ1�+1, . . . , X�nθ2�, . . . , X�nθκ �+1, . . . , Xn

is formed as the concatenation of κ + 1 non-overlapping segments, where κ ∈ N and 0 < θ1 < · · · < θκ < 1. Each segment 
is generated by some unknown time-series (or process) distribution. The distributions that generate every pair of consec-
utive segments are different. The index �nθk� where one segment ends and another starts is called a change point. The 
parameters θk , k = 1..κ specifying the change points �nθk� are unknown and have to be estimated.

In a typical formulation of the problem, the samples within each segment X�nθ1�+1..X�nθ2� are assumed to be i.i.d. and the 
change is in the mean (see, e.g., [3] for a review). In the literature on nonparametric change point methods for dependent 
data the form of the change and/or the nature of dependence are usually restricted; for example, settings involving time 
series that satisfy strong mixing conditions are often considered [1]. Moreover, the finite-dimensional marginals are almost 
exclusively assumed different [4,5]. Such assumptions often do not hold in real-world applications. From a machine-learning 
perspective, change point estimation appears to be a difficult unsupervised learning problem: an algorithm is required to 
locate the changes in a given sequence without any examples of correct solutions.

In this paper, we consider highly dependent time series, making as few assumptions as possible on how the data are 
generated. The only assumption that we make is that each segment is generated by an unknown stationary ergodic pro-
cess distribution. The joint distribution over the samples can be otherwise arbitrary. We make no such assumptions as 
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independence, finite memory or mixing. The marginal distributions of any given size before and after the change may be 
the same: the change refers to that in the time-series distribution.

The main result of this paper is an asymptotically consistent algorithm for estimating all κ parameters θk , k = 1..κ si-
multaneously. We assume that κ is given, but the process distributions as well as the nature of the change are unknown. 
An estimate θ̂k of a change point parameter θk is asymptotically consistent if it becomes arbitrarily close to θk in the limit, as 
the length n of the sequence approaches infinity. However, the problem is offline and x does not grow with time. Thus, the 
asymptotic regime only means that the error is arbitrarily small if the sequence is sufficiently long. Real-world scenarios that 
correspond to this formulation include, for example, genomic data, sequences of stock-market values, high-resolution au-
dio/video data, and all such long sequential observations with distributional changes, where the distributions are completely 
unknown, changes are arbitrary, but the segments are long.

While the assumption that each segment is generated by a stationary ergodic process is already very general, it can be 
relaxed even further. In particular, one relatively simple but meaningful generalisation that we consider is that each process 
is asymptotically mean stationary ergodic. This generalisation allows us to address the problem of gradual (as opposed to 
abrupt) change in the distribution.

In general, for stationary ergodic processes, rates of convergence are provably impossible to obtain; this already concerns 
the convergence of frequencies to probabilities [6]. Thus, non-asymptotic results cannot be obtained in this setting. On the 
other hand, this means that, unlike in more restricted settings, in our setting the algorithms are forced not to rely on 
any rate of convergence guarantees. We see this as an advantage of the framework, as it means that the algorithms are 
applicable to a much wider range of situations. Furthermore, in this setting it is provably impossible to estimate κ . This 
follows from the impossibility result of [7], which states that it is not possible to determine, even in the weakest asymptotic 
sense, whether two sequences have been generated by the same or by different stationary ergodic distributions. Thus, in 
this paper we assume that κ is known.

The case of κ = 1 was addressed in [8], where a simple consistent algorithm for estimating one change point was 
provided. The general case of κ > 1 turns out to be much more complex. With the sequence containing multiple change 
points, the algorithm is required to simultaneously analyse multiple segments of the input sequence, with no a-priori lower 
bound on their lengths. In this case the main challenge is to ensure that the algorithm is robust with respect to segments of 
arbitrarily small length. The problem is considerably simplified if additionally a lower bound on the minimum separation of 
the change points is provided. Indeed, the method of [8] for κ = 1 also relies on the knowledge of such parameter, namely, 
a lower bound on the minimum distance of the change point from the two end-points. With this additional information, 
some inference can be made even in the case where κ > 1 is unknown. Specifically, an algorithm is proposed in [9] which, 
without the knowledge of κ , gives an exhaustive list of candidate estimates whose first κ elements constitute asymptotically 
consistent estimates of the change points. Assuming additionally that the total number of different distributions generating 
the sample is known, it is shown in [10] that the number of change points κ can be found eventually almost surely for 
large enough n. In this work we do not make any such assumptions; specifically, we do not assume that a lower bound on 
the minimum separation of the change points is known.

Our algorithm is based on empirical estimates of the so-called distributional distance [11], which have proven useful in 
various statistical and learning problems involving stationary ergodic time series [8–10,12–14]. The computational complex-
ity of our algorithm is at most quadratic in each argument. We evaluate the proposed method on synthetic data generated 
by processes that, while being stationary ergodic, do not belong to any of the “simpler” classes studied in the literature 
on such problems. In particular, the processes used in the experiments cannot be modelled as hidden Markov processes 
with a countable set of states. Moreover, in the considered examples the single-dimensional marginals before and after each 
change point are the same.
Organisation. In Section 2 we introduce preliminary notations and definitions. In Section 3 we formalise the problem and 
describe the general framework considered. In Section 4 we present our method, state the main consistency result, and 
informally describe how the algorithm works; the proof of the main result is deferred to Section 8. In Section 6 we provide 
some experimental evaluations. In Section 5 we discuss some theoretical extensions of the considered framework and finally 
we conclude in Section 7.

2. Preliminaries

Let X be a measurable space (the domain); in this work we let X = R, but extensions to more general spaces are 
straightforward. For a sequence X1, . . . , Xn we use the abbreviation X1..n . Consider the Borel σ -algebra B on X∞ generated 
by the cylinders {B × X∞ : B ∈ Bm,l, m, l ∈ N}, where the sets Bm,l , m, l ∈ N are obtained via the partitioning of Xm into 
cubes of dimension m and volume 2−ml (starting at the origin). Let also Bm := ∪l∈NBm,l . Process distributions are probability 
measures on the space (X∞, B). For x = X1..n ∈ X n and B ∈ Bm let ν(x, B) denote the frequency with which x falls in B , 
i.e.

ν(x, B) := I{n ≥ m}
n − m + 1

n−m+1∑
i=1

I{Xi..i+m−1 ∈ B}. (1)

A process ρ is stationary if for any i, j ∈ 1..n and B ∈ Bm , m ∈ N, we have ρ(X1.. j ∈ B) = ρ(Xi..i+ j−1 ∈ B). A stationary 
process ρ is called stationary ergodic if for all B ∈ B with probability 1 we have limn→∞ ν(X1..n, B) = ρ(B). By virtue of the 
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ergodic theorem this definition can be shown to be equivalent to the usual definition given in terms of shift-invariant sets; 
see e.g., [11,15].

Definition 1 (Distributional distance). (See [11].) The distributional distance between a pair of process distributions ρ1, ρ2 is 
defined as follows

d(ρ1,ρ2) :=
∞∑

m,l=1

wm wl

∑
B∈Bm,l

|ρ1(B) − ρ2(B)| .

We let w j := 1
j( j+1)

, but any summable sequence of positive weights may be used.

In words, we partition the sets Xm , m ∈N into cubes of decreasing volume (indexed by l) and take a weighted sum over 
the differences in probabilities of all the cubes in these partitions. Different generating sets (other than cubes) can be used 
to define the distributional distance; here we chose cubes in order to facilitate the experimental setup. Smaller weights are 
given to larger m and finer partitions. We use empirical estimates of this distance, where probabilities are replaced with 
frequencies:

Definition 2 (Empirical estimates of d(·, ·)). For xi ∈ X ni ni ∈ N, i = 1, 2, and a distribution ρ the empirical estimate of d are 
defined as

d̂(x,ρ) :=
mn∑

m=1

ln∑
l=1

wm wl

∑
B∈Bm,l

|ν(x, B) − ρ(B)| , (2)

d̂(x1, x2) :=
mn∑

m=1

ln∑
l=1

wm wl

∑
B∈Bm,l

|ν(x1, B) − ν(x2, B)| , (3)

where mn and ln are any sequences of integers that go to infinity with n.

Remark 1. Despite the infinite summations, d̂ can be calculated efficiently [12]. Its computational complexity is upper-
bounded by O(n polylog n) for mn := log n, the choice of which is justified in [13] (see also [9]).

Proposition 1 (d̂(·, ·) is consistent; see [8]). Let a pair of sequences x1 ∈ X n1 and x2 ∈ X n2 be generated by a distribution ρ whose 
marginals ρi , i = 1, 2 are stationary and ergodic. Then

lim
ni→∞ d̂(xi,ρ j) = d(ρi,ρ j), i, j ∈ 1,2, ρ − a.s., (4)

lim
n1,n2→∞ d̂(x1, x2) = d(ρ1,ρ2), ρ − a.s. (5)

3. Problem formulation

We formalise the problem of multiple change point estimation as follows. The sequence x ∈ X n , n ∈ N is formed as the 
concatenation of κ + 1 of sequences

X1..�nθ1�, X�nθ1�+1..�nθ2�, . . . , X�nθκ �+1..n,

where θk ∈ (0, 1), k = 1..κ , and where the number of change points κ is assumed known. Denote θ0 := 0, θκ+1 := 1. Each 
of the sequences xk := X�nθk−1�+1..�nθk� , k = 1..κ + 1, is generated by an unknown stationary ergodic process distribution. 
Formally, consider a matrix X ∈ (X κ+1)∞ of random variables generated by some (unknown) stochastic process distribution 
ρ such that 1. the marginal distribution over every one of its rows is an unknown stationary ergodic process distribution;
2. the marginal distributions over the consecutive rows are different, so that every two consecutive rows are generated by 
different process distributions. The sequence x ∈ X n is formed as follows. First, the length n ∈ N is fixed, next for each 
k = 1..κ + 1 a segment xk ∈X �n(θk−θk−1)� is obtained as the first �n(θk − θk−1)� elements of the kth row of X.

Note that the requirements are only on the marginal distributions over the rows; the distribution ρ is otherwise com-
pletely arbitrary. The process distributions are unknown and may be dependent. Moreover, the means, variances, or, more 
generally, the finite-dimensional marginal distributions of any fixed size before and after the change points are not required 
to be different. We consider the most general scenario where the process distributions are different.

The parameters θk , k = 1..κ specify the change points �nθk�, which separate consecutive segments xk, xk+1 generated by 
different process distributions. Define the minimum separation of the change point parameters as

λmin := min θk − θk−1. (6)

k=1..κ+1
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Algorithm 1 A multiple change point estimator.
1: input: x = X1..n , Number κ of Change points
2: initialize: η ← 0
3: for j = 1.. logn do
4: λ j ← 2− j , α j ← λ j/3, w j ← 2− j � Set the step size and iteration weight
5: for t = 1..κ + 1 do
6: bt, j

i ← nα j(i + 1
t+1 ), i = 0..� 1

α j
− 1

t+1 � � Generate boundaries

7: for l = 0..2 do
8: di′ ← 
x(b

t, j
l+3(i′−1)

, bt, j
l+3i′ ), i′ = 1.. 1

3 (� 1
α j

− 1
t+1 � − l)

9: γl ← d[κ] � Store the κ th highest value
10: end for
11: γ (t, j) ← min

l=0..2
γl � Obtain the grid’s performance score

12: {μ1, . . . , μκ } ← k=1..κ
argmax

i∈1..� 1
α j

− 1
t+1 �−1


x(b
t, j
i , bt, j

i+1) � Find κ segments of highest 
x; (X
bt, j
μk

..bt, j
μk+1

is the 
segment with kth highest score).

13: (bt, j
[1], . . . , b

t, j
[κ]) ← sort(bt, j

μ1 , . . . ,bt, j
μκ

) � Sort the selected boundaries in increasing order

14: π̂
t, j
k := x(b

t, j
[k], b

t, j
[k]+1, α j), k = 1..κ � Seek a change point in κ segments of highest 
x

15: η ← η + w jγ (t, j) � Update the sum of weights
16: end for
17: end for
18: θ̂k ← 1

nη

∑log n
j=1

∑κ+1
t=1 w jγ (t, j)π̂ t, j

k , k = 1..κ � Calculate the final estimates

19: return: θ̂1, . . . , ̂θκ

Since the consistency properties that we seek are asymptotic in n, we require that λmin > 0. This means that the (unknown) 
minimum separation of the change points is linear in n. Note that this condition is standard in the change point literature, 
although it may be unnecessary when simpler formulations of the problem are considered, for example when the samples 
within each segment are i.i.d. However, conditions of this kind are inevitable in the general setting that we consider, where 
the segments and the samples within each segment are allowed to be arbitrarily dependent: if the length of one of the 
sequences is constant or sub-linear in n then asymptotic consistency is not possible in this setting. Finally, note that we 
make no assumptions on the distance between the process distributions: they can be arbitrarily close.

Our goal is to devise an algorithm that provides estimates θ̂k for the parameters θk , k = 1..κ . The algorithm must be 
asymptotically consistent so that

lim
n→∞ sup

k=1..κ
|θ̂k(n) − θk| = 0 a.s. (7)

4. Main result

In this section we propose Algorithm 1, which, as shown in Theorem 1, is asymptotically consistent under the general 
assumptions stated in Section 3. The proof of the consistency result is deferred to Section 8. Here we give an intuitive 
description of how the algorithm works and why the consistency result holds.

Theorem 1. Algorithm 1 is asymptotically consistent, provided that each segment xk, k = 1..κ , is generated by a stationary ergodic 
distribution, and that the correct number κ of change points is given:

lim
n→∞ sup

k=1..κ

∣∣∣θ̂k(n) − θk

∣∣∣ = 0 a.s.

The following two operators, namely, the score function 
x and the single-change point-estimator x are used in the 
algorithm.

Definition 3. Let x = X1..n be a sequence and consider a subsequence Xa..b of x with a < b ∈ 1..n.

i. Define the score function or the intra-subsequence distance of Xa..b as


x(a,b) := d̂
(

Xa..� a+b
2 �, X a+b

2 �..b
)

(8)

ii. Define the single-change point estimator of Xa..b as

x(a,b,α) := argmax
t∈a..b

d̂
(

Xa−nα..t, Xt..b+nα

)
, where α ∈ (0,1) (9)

Let us start by giving an overview of what Algorithm 1 aims to do. The algorithm attempts to simultaneously estimate all 
κ change points using the single-change point-estimator x given by (8) applied to appropriate segments of the sequence. 
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Fig. 1. For a fixed j, Algorithm 1 generates κ + 1 grids composed of segments of length nα j but with distinct starting points: nα j/(t + 1), t = 1..κ + 1, 
where α j is the algorithm’s guess of λmin/3. At the iteration shown in this figure, α j ≤ λmin/3 so that every three consecutive segments contain at most 
one change point. Since there are κ change points, there exists at least one grid (in this example the one corresponding to t = κ + 1) with the property 
that none of the change points are located at the boundaries.

In order for x to produce asymptotically consistent estimates in this setting, each change point must be isolated within a 
segment of x whose length is a linear function of n. Moreover, each segment containing a change point must be “sufficiently 
far” from the rest of the change points, where “sufficiently far” means within a distance linear in n. This may be achieved by 
dividing x into consecutive non-overlapping segments, each of length nα with α := λ/3 for some λ ∈ (0, λmin], where λmin
is given by (6). Since, by definition, λmin specifies the minimum separation of the change point parameters, the resulting 
partition has the property that every three consecutive segments of the partition contain at most one change point. However, 
λmin is not known to the algorithm. Moreover, even if λ ≤ λmin, not all segments in the partition contain a change point. 
The algorithm uses the score function 
x given by (8) to identify the segments that contain change points. As for λmin, 
instead of trying to find it, the algorithm produces many partitions of x (using different guesses of λmin), and gives a 
set of candidate change point estimates using each guess. Finally, a weighted combination of the candidate estimates is 
produced. The weights are designed to converge to zero on iterations where the algorithm’s guess of a lower bound on λmin
is incorrect.

More precisely, Algorithm 1 works as follows. Given x ∈X n , it iterates over j = 1.. log n, and at each iteration it produces 
a guess λ j as a lower-bound on λmin. For every fixed j, a total of κ +1 grids are generated, each composed of evenly-spaced 
boundaries bt, j

i , i = 0..� 1
α j

− 1
t+1 �, that are nα j apart for α j := λ j/3, λ j := 2− j . This is specified in Line 6 of Algorithm 1. 

The grids have distinct starting positions nα j
t+1 for t = 1..κ + 1. As shown in the proof of Theorem 1, this ensures that for a 

fixed j at least one of the grids for some t ∈ 1..κ + 1 has the property that the change points do not lie at the boundaries. 
This idea is depicted in Fig. 1. Among the segments of the grid, κ segments, X

bt, j
[k] ..b

t, j
[k]+1

, k = 1..κ , of highest score 
x

are selected; this is outlined in Lines 12 and 13 of the algorithm. The single-change point estimator x is used to seek a 
candidate change point parameter in each of the selected segments. The weighted combination is given as the final estimate 
for every change point parameter θk , k = 1..κ . Two sets of weights are used, namely, an iteration weight w j := 2− j and a 
score γ (t, j). The former gives lower precedence to finer grids. To calculate the latter, at each iteration on j and t , for 
every fixed l ∈ 0..2, a partition of the grid is considered, composed of non-overlapping consecutive segments X

bt, j
l+3(i′−1)

..bt, j
l+3i′

, 

i′ = 1.. 1
3 (� 1

α j
− 1

t+1 � − l) of length nλ j . For each partition, a parameter γl is calculated as the κth highest intra-subsequence 
distance value 
x of its segments; the performance weight γ (t, j) is obtained as minl=0..2 γl; this procedure is outlined in 
Lines 7–11 of the algorithm. (As shown in the proof, γ (t, j) converges to zero on iterations where either λ j > λmin or there 
exists some change point on the boundary of one of the segments.)
Computational complexity. The proposed method can be easily and efficiently implemented. For a fixed j, a total of 1/α j

distance calculations are done on segments of length 3α j , and a total of κα jn distance calculations are done to estimate 
each change point; the procedure is repeated κ +1 times. By Remark 1, and summing over j ∈ 1.. log n iterations, the overall 
complexity of these calculations is bounded by O(κ2n2 polylog n). The rest of the computations are of negligible order.

5. Generalisation: AMS processes and gradual changes

In this section we argue that our results can be strengthened to a more general case, where the process distributions 
that generate the data are Asymptotically Mean Stationary (AMS) ergodic. We use this observation in turn to address the 
problem of estimating gradual as opposed to abrupt changes in the distribution of the data.

Recall that a process ρ is stationary if for any i, j ∈ 1..n and B ∈ Bm , m ∈ N, we have ρ(X1.. j ∈ B) = ρ(Xi..i+ j−1 ∈ B). 
A process ρ is called AMS if for any j ∈ 1..n and B ∈ Bm, m ∈ N the series limn→∞

∑n
i=1

1
n ρ(Xi..i+ j−1 ∈ B) converges. In 

this case the limit, which we denote ρ̄(B), forms a measure ρ̄(X1.. j ∈ B) := ρ̄(B), B ∈ Bm , m ∈ N, called the asymptotic 
mean of ρ . Furthermore, for AMS processes for every B ∈ Bm , m ∈N, the frequency ν(X1..n, B) converges ρ-a.s. to a random 
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variable with mean ρ̄(B). Finally, as in the case of stationary processes, if the latter random variable is a.s. constant, then ρ
is called AMS ergodic. The reader is referred to [11] for more information on AMS processes.

It is easy to check that our results readily hold for the case where the unknown process distributions that generate the 
data are AMS ergodic, and their asymptotic means before and after the change are different. Indeed, the only property that 
is used in the proofs is the convergence of all frequencies. The class of all processes with AMS properties is precisely the 
class of all processes for which this convergence holds.

This generalisation allows us to take into consideration gradual rather than abrupt changes in distribution. So far we 
have considered a formulation in which the distribution is the same throughout a segment and is different between the 
segments. This kind of change is referred to as abrupt. Another formulation of the problem also considered in the literature 
(e.g., [1]) is when the process distributions change gradually. More formally, we are given a sequence x ∈ X n , n ∈ N such 
that

x := X
1..�nθ

(1)
1 �, X�nθ

(1)
1 �+1..�nθ

(2)
1 �, X�nθ

(2)
1 �+1..�nθ

(1)
2 �, . . . , X�nθ

(2)
κ �+1..n

has κ change points at �nθ
(1)

k �, k ∈ κ . The segments X�nθ
(2)

k−1�+1..�nθ
(2)

k � , k = 1..κ , where θ(2)
0 := 0 and θ(1)

κ+1 := 1, are generated 

by unknown, stationary ergodic process distributions. Moreover, their lengths are linear in n so that λmin := θ
(2)

k − θ
(2)

k−1 > 0. 
The notion of gradual change is formalised by considering between every pair of consecutive segments generated by dif-
ferent process distributions some arbitrary sequence of o(n) length, i.e. for all k ∈ 1..κ we have θ(2)

k − θ
(1)

k = o(n), and 
X�nθ

(1)
1 �+1..�nθ

(2)
1 � is arbitrary (for example, deterministic). Observe that under this formulation the process distributions gen-

erating the segments X�nθ
(1)

k−1�+1..�nθ
(1)

k � , k = 1..κ , where θ(1)
0 := 0, are AMS ergodic. Thus, by the above argument the results 

of Theorem 1 carry over to this scenario as well, ensuring the asymptotic consistency of Algorithm 1 in this formulation. 
Even more generally, under the AMS ergodic assumption, such o(n) segments of arbitrary data could be located anywhere 
within the segments, without affecting the asymptotic consistency results.

6. Experimental evaluations

In this section we evaluate our method using synthetically generated data. In order to generate the data we use stationary 
ergodic process distributions that do not belong to any “simpler” general class of time-series, and cannot be approximated by 
finite-state models. Moreover, the single-dimensional marginals of all distributions are the same throughout the generated 
sequence.

We generate a segment y := Y1, . . . , Ym ∈ R
m , m ∈ N as follows. 1. Fix a parameter α ∈ (0, 1) and two Gaussian distri-

butions N1 and N2. 2. Let r0 be drawn randomly from [0, 1]. 3. For each i = 1..m obtain ri := ri−1 + α mod 1; draw y( j)
i

from N j , j = 1, 2. 4. Set Yi := I{ri ≤ 0.5}y(1)
i + I{ri > 0.5}y(2)

i . If α is irrational this produces a real-valued stationary ergodic 
time-series. We simulate α by a long double with a long mantissa. Note that deterministically setting y(1)

i = 0 and y(2)
i = 1, 

i ∈ 1..m results in a binary sequence x ∈ {0, 1}m . Similar families are commonly used as examples in this framework; see, 
for example, [6].

6.1. Convergence of error-rate as a function of sequence-length n

We considered three values of κ : 4, 5 and 6. In each case, we fixed κ + 1 parameters α1 := 0.2.., α2 := 0.4.., α3 :=
0.6.., . . . (with long mantissae)1 to correspond to different process distributions and used two Gaussian distributions N1
and N2 with means 0 and 1 respectively, and standard deviation 1. To produce x ∈ R

n in each case we used the first κ
change point parameters from the following sequence of 6 values θ1 = 0.18, θ2 = 0.29, θ3 = 0.51, θ4 = 0.62, θ5 = 0.80 and 
θ6 = 0.91, and respectively set θ0 = 0 and θκ+1 = 1. Notice that for κ = 6 the minimum separation λmin between the change 
points is 0.09 and for κ = 4, 5 it is 0.1. Every segment of length nk := �n(θk − θk−1)�, k = 1..κ + 1 with θ0 := 0, θκ+1 := 1
was generated with αk , k = 0..κ + 1, and using N1 and N2. Fig. 2 demonstrates the average estimation error of Algorithm 1
as a function of sequence length n. We calculate the estimation error as 

∑κ
k=1 |θ̂k − θk|. As can be seen in the graph, while 

the error converges to zero in all three cases, this convergence is on average slightly slower for larger κ .

6.2. Dependence on the minimum separation λmin between the change points

We fixed the sequence length n, and varied λmin to observe the average error change as a function λmin. More specifically, 
we generated sequences x ∈ {0, 1}n , n = 3.0 × 104 with κ = 4 change-points as the concatenation of 5 segments of lengths 
5000, n0, 12000 − n0, 7000, 6000 respectively, where n0 = 1000, 1250, 1500, . . . , 5000; note that λmin = n0/n in this case. 
To generate the segments we proceeded as in the previous experiment but with binary-valued processes (letting y(1)

i = 0

1 α1 = 0.22573625315372165312763512 α2 = 0.465456356354654376453 α3 = 0.678638276327863278362736283628736

α4 = 0.887438463874637846343 α5 = 0.07283729372372987323232323 α6 = 0.4272638726382736328791217312893 α7 = α1.
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Fig. 2. Average (over 20 iterations) error of Alg1(x, κ), x ∈R
n , as a function of n for κ = 4,5,6.

Fig. 3. Average (over 10 iterations) error of Alg1(x, κ), x ∈ {0,1}n as a function of λmin for n = 3.0 × 104 and κ = 4.

and y(2)
i = 1, i ∈ 1..n), and used α1 := 0.12.., α2 := 0.14.., α3 := 0.16.., . . . (with long mantissae)2 as parameters for the 

consecutive distributions. As can be seen in Fig. 3, for a fixed n, the estimation error decreases as a function of λmin.

7. Concluding remarks

We have presented an asymptotically consistent method to locate the changes in highly dependent time-series data. As 
explained in the introduction, in the considered setting rates of convergence (even of frequencies to respective probabilities) 
are provably impossible to obtain, which is why the proposed algorithm comes only with asymptotic guarantees. At the 
same time, it may be interesting to analyse how fast its error converges to zero under stronger assumptions, such as i.i.d. 
or mixing conditions. More generally, it would be interesting to discover whether asymptotic guarantees in the considered 
settings can be combined with optimality (up to constant factors) under stronger assumptions. The same questions can be 

2 α1 = 0.122573625315372165312763512 α2 = 0.1465456356354654376453 α3 = 0.1678638276327863278362736283628736

α4 = 0.1887438463874637846343 α5 = 0.107283729372372987323232323.
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posed for the problems of [9,10] described in the introduction, where the number of change points is unknown. This is 
left for future work. Another interesting question concerns the time series distance used in the algorithms. The consistency 
result is established using some properties specific to the (empirical estimates of the) distributional distance. It could be 
interesting to see whether analogous results can be established for other distances which can be estimated consistently 
for stationary ergodic process distributions, such as the telescope distance of [16], or whether such results can be obtained 
with compression-based methods in the spirit of [17]. Finally, an interesting generalisation of the considered problems could 
be a one to processes stationary over more than one dimension, such as space-time stationary processes. In this case, the 
change-point estimation problem turns into the problem of approximating the boundaries of regions in which the data are 
generated by the same distribution.

8. Proof of Theorem 1

Proof Sketch. To see why Algorithm 1 works, first observe that the empirical estimate d̂(·, ·) of the distributional distance 
is consistent. Thus, the empirical distributional distance between a given pair of sequences converges to the distributional 
distance between their generating processes. From this we can show that the intra-subsequence distance 
x corresponding 
to the segments in the grid that do not contain a change point converges to zero. This is established in Lemma 1.(iii) below. 
On the other hand, since the generated grid becomes finer as a function of j, from some j on, we have α j < λmin/3 so that 
every three consecutive segments of the grid contain at most one change point. In this case, for every segment that con-
tains a change point, the single-change-point estimator x produces an estimate that, for long enough segments, becomes 
arbitrarily close to the true change point. This is shown in Lemma 3.(ii) below. Moreover, as follows from Lemma 3.(i), for 
large enough n the performance scores associated with these segments are bounded below by some non-zero constant. 
Thus, the κ segments of highest 
x each contain a change point which can be estimated consistently using x . However, 
the estimates produced at a given iteration for which α j > λmin/3 may be arbitrarily bad. Moreover, recall that even for 
α j ≤ λmin/3, an appropriate grid to provide consistent estimates must have the property that no change point lies exactly 
on a grid boundary. However, it is not possible to directly identify such appropriate grids. The following observation is key 
to their indirect identification.

Consider the partitioning of x into κ consecutive segments where there exists at least one segment with more than 
one change point. Since there are exactly κ change points, there must exist at least one segment in this partitioning that 
does not contain any change points. As follows from Lemma 1.(iii), the segment that contains no change points has an 
intra-subsequence distance 
x that converges to 0. On the iterations for which α j > λmin/3, at least one of the three 
partitions has the property that among every set of κ segments in the partition, there is at least one segment that contains 
no change points. In this case, 
x corresponding to the segment without a change point converges to 0. The same argument 
holds for the case where α j ≤ λmin, while at the same time a change point happens to be located exactly at the boundary 
of a segment in the grid. Observe that for a fixed j, the algorithm forms a total of κ + 1 different grids, with the same 
segment size, but distinct starting points nα j

t+1 t = 1..κ + 1. Since there are κ change points, for all j such that α j ≤ λmin/3
there exists at least one appropriate grid (for some τ ∈ 1..κ + 1), that simultaneously contains all the change points within 
its segments. In this case, γ (τ , j) converges to a non-zero constant. The final estimate θ̂k for each change point parameter 
θk is obtained as a weighted sum of the candidate estimates produced at each iteration. Two sets of weights are used in 
this step, namely γ (t, j) and w j , whose roles can be described as follows.

1. γ (t, j) is used to penalise for the (arbitrary) results produced on iterations on j ∈ 1.. log n and t ∈ 1..κ + 1, where 
either α j > λmin/3, or, while we have α j ≤ λmin/3, there exists some θk for some k ∈ 1..κ such that �nθk� ∈ {bt, j

i :
i = 0..� 1

α j
− 1

t+1 �}. As follows from the argument above, γ (t, j) converges to zero only on these iterations, while it is 
bounded below by a non-zero constant on the rest.

2. w j is used to give precedence to estimates sought in longer segments. Since the grids are finer for larger j, at some 
higher iterations the segments may not be long enough to produce correct estimates.

Therefore, if n is large enough the final estimates θ̂k , k = 1..κ produced by Algorithm 1 converge to the true change point 
parameters, θk , k = 1..κ . We now present a proof for Theorem 1 which in turn depends upon some technical lemmas below.

Lemma 1. Let x = X1..n be generated by a stationary ergodic process ρ . For all α ∈ (0, 1) the following statements hold with 
ρ-probability 1:

(i) limn→∞ sup
b1,b2∈1..n
b2−b1≥αn

∑
B∈Bm,l

m,l∈1..T

∣∣ν(Xb1..b2 , B) − ρ(B)
∣∣ = 0 for every T ∈N.

(ii) lim
n→∞ sup

b1,b2∈1..n
b2−b1≥αn

d̂
(

Xb1..b2 ,ρ
) = 0.

(iii) lim
n→∞ sup

b2−b1≥αn

x (b1,b2) = 0.



A. Khaleghi, D. Ryabko / Theoretical Computer Science 620 (2016) 119–133 127
Proof. (i). Assume the contrary: There exists and some λ > 0, T ∈ N and sequences b(i)
1 ∈ 1..ni and b(i)

2 ∈ 1..ni , ni, i ∈N with 
b(i)

2 − b(i)
1 ≥ αni , such that with probability 
 > 0 we have

lim sup
i∈N

∑
B∈Bm,l

m,l∈1..T

∣∣∣ν(X
b(i)

1 ..b(i)
2

, B) − ρ(B)

∣∣∣ > λ. (10)

From the definition of ν(·, ·) given by (1), it is easy to see that for all B ∈ Bm,l , m, l ∈N and b1 < b2 ∈ 1..n we have

∣∣ν(Xb1..b2 , B) − ρ(B)
∣∣ ≤

∣∣∣∣
(

1 − m − 1

b2 − b1

)
ν(Xb1..b2 , B) − ρ(B)

∣∣∣∣ + m − 1

b2 − b1

≤ 4(m − 1)

b2 − b1
+

2∑
i=1

bi

b2 − b1

∣∣ν(X1..bi , B) − ρ(B)
∣∣ . (11)

Fix ε > 0. For each m, l ∈ 1..T we can find a finite subset Sm,l ⊂ Bm,l such that

ρ(Sm,l) ≥ 1 − ε

T 2 wm wl
. (12)

Since ρ is stationary ergodic, for every B ∈ Sm,l , there exists some N(B) such that with probability 1 for all t ≥ N(B)

sup
b≥t

|ν(X1..b, B) − ρ(B)| ≤ ερ(B)

T 2 wm wl
. (13)

Define ζ0 := min
m,l∈1..T

ε
T 2 wm wl

. (Note that in the particular case where wi = 1/i(i + 1), i = m, l, we simply get ζ0 = 4ε/T 2, but 

we keep this parameter in its general form, independently of the specific choice of wm and wl .) Let ζ := min{α, ζ0} and 
observe that ζ > 0. For every m, l ∈ 1..T and all t ∈N we have,

sup
b1≤ζ t

b2−b1≥αt

b1

b2 − b1
≤ ζ

α
≤ ε

αT 2 wm wl
. (14)

Define N := maxm,l=1..T N(B)/ζ . On the other hand, by (13) for all n ≥ N we have

sup
b1>ζn

∣∣ν(X1..b1 , B) − ρ(B)
∣∣ ≤ ερ(B)

T 2 wm wl
. (15)

Increase N if necessary to have

T∑
m,l=1

wm wl
m

αN
≤ ε. (16)

For all n ≥ N we obtain

sup
b1,b2∈1..n
b2−b1≥αn

T∑
m,l=1

wm wl

∑
B∈Bm,l

∣∣ν(Xb1..b2 , B) − ρ(B)
∣∣

≤ sup
b1,b2∈1..n
b2−b1≥αn

T∑
m,l=1

wm wl

∑
B∈Sm,l

∣∣ν(Xb1..b2 , B) − ρ(B)
∣∣ + ε (17)

≤ sup
b1,b2∈1..n
b2−b1≥αn

T∑
m,l=1

wm wl

∑
B∈Sm,l

b2

b2 − b1

∣∣ν(X1..b2 , B) − ρ(B)
∣∣

+ sup
b1>ζn

b2−b1≥αn

T∑
m,l=1

wm wl

∑
B∈Sm,l

b1

b2 − b1

∣∣ν(X1..b1 , B) − ρ(B)
∣∣

+ sup
b1≤ζn

b2−b1≥αn

T∑
m,l=1

wm wl

∑
B∈Sm,l

b1

b2 − b1

∣∣ν(X1..b1 , B) − ρ(B)
∣∣ + 5ε (18)

≤ ε(3/α + 5) (19)
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where, (17) follows from (12), (18) follows from (11) and (16), and (19) follows from (13), (15), (14), summing over the 
probabilities, and noting that b2

b2−b1
≤ 1

α for all b2 − b1 ≥ αn. Observe that (19) holds for any ε > 0, and in particular for 
ε ∈ (0, λ

3/α+5 ). As a result, in the latter case for all n ≥ N we have

sup
i∈N

ni≥n

∑
B∈Bm,l

m,l∈1..T

∣∣∣ν(X
b(i)

1 ..b(i)
2

, B) − ρ(B)

∣∣∣ < λ,

contradicting (10). This contradiction implies (i).
(ii). Fix ε > 0, α ∈ (0, 1). We can find some T ∈N such that

∞∑
m,l=T

wm wl ≤ ε. (20)

By (i), there exists some N such that for all n ≥ N we have

sup
b1,b2∈1..n

|b2−b1|≥αn

T∑
m,l=1

∑
B∈Bm,l

∣∣ν(Xb1..b2 , B) − ρ(B)
∣∣ ≤ ε. (21)

From (20) and (21), for all n ≥ N we have

sup
b1,b2∈1..n

|b2−b1|≥αn

d̂(Xb1..b2 ,ρ) ≤ sup
b1,b2∈1..n

|b2−b1|≥αn

T∑
m,l=1

wm wl

∑
B∈Bm,l

∣∣ν(Xb1..b2 , B) − ρ(B)
∣∣ + ε ≤ 2ε

and Part (ii) follows.
(iii). Fix ε > 0, α ∈ (0, 1). Without loss of generality assume that b2 > b1. Observe that, for every b1 + αn ≤ b2 ≤ n, we 

have b1+b2
2 − b1 = b2 − b1+b2

2 ≥ αn/2. Therefore, by (ii), there exists some N , such that for all n ≥ N1 we have

sup
b2−b1≥αn

d̂

(
X

b1..
b1+b2

2
,ρ

)
≤ ε,

sup
b2−b1≥αn

d̂

(
X b1+b2

2
..b2,ρ

)
≤ ε.

It remains to use the definition of 
x given by (8) and the triangle inequality to observe that

sup
b2−b1≥αn


x (b1,b2) = sup
b2−b1≥αn

d̂

(
X

b1..
b1+b2

2
, X b1+b2

2 ..b2

)

≤ sup
b2−b1≥αn

d̂

(
X

b1..
b1+b2

2
,ρ

)
+ d̂

(
X b1+b2

2
..b2,ρ

)
≤ 2ε

for all n ≥ N , and (iii) follows. �
Lemma 2. Let x ∈ X n have a change point at π = θn for some θ ∈ (0, 1) so that the segments X1..π , Xπ..n are generated by ρ , ρ ′
respectively. If ρ , ρ ′ are stationary ergodic, for every ζ ∈ (0, min{θ, 1 − θ}) with probability 1 we have

(i) lim
n→∞ sup

b∈1..(θ−ζ )n
t∈π..(1−ζ )n

d̂

(
Xb..t,

π − b

t − b
ρ + t − π

t − b
ρ ′

)
= 0.

(ii) lim
n→∞ sup

b∈ζn..π
t∈(θ+ζ )n..n

d̂

(
Xb..t,

π − b

t − b
ρ + t − π

t − b
ρ ′

)
= 0.

Proof. (i). Fix ε > 0, θ ∈ (0, 1), ζ ∈ (0, min{θ, 1 − θ}). There exists some T ∈ N such that 
∑∞

m,l=T wm wl ≤ ε. By the definition 
of ν(·, ·), for all b ∈ 1..(θ − ζ )n, t ∈ π..(1 − ζ )n and all B ∈ Bm,l m, l ∈ 1..T we have∣∣ν(Xπ..t, B) − ρ ′(B)

∣∣ ≤ n − π

t − π − m + 1

∣∣ν(Xπ..n, B) − ρ ′(B)
∣∣

+ n − t

t − π − m + 1

∣∣ν(Xt..n, B) − ρ ′(B)
∣∣ + 3(m − 1)

t − π − m + 1
. (22)

Furthermore, using the fact that ν(·, ·) ≤ 1, for all b ∈ 1..(θ − ζ )n, t ∈ π..(1 − ζ )n and B ∈ Bm,l m, l ∈ 1..T we obtain
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∣∣∣∣ν(Xb..t, B) − π − b

t − b
ρ(B) − t − π

t − b
ρ ′(B)

∣∣∣∣
≤ π − b

t − b
|ν(Xb..π , B) − ρ(B)| + t − π − m + 1

t − b

∣∣ν(Xπ..t, B) − ρ ′(B)
∣∣ + 3(m − 1)

t − b
. (23)

By Part (i) of Lemma 1, there exists some N ′ such that for all n ≥ N ′ we have

sup
b∈1..(θ−ζ )n

T∑
m,l=1

wm wl

∑
B∈Bm,l

|ν(Xb..π , B) − ρ(B)| ≤ ε. (24)

Similarly, n − t ≥ ζn for all t ∈ π..(1 − ζ )n. Therefore, by Part (i) of Lemma 1, there exists some N ′′ such that for all n ≥ N ′′
we have

sup
t∈π..(1−ζ )n

T∑
m,l=1

wm wl

∑
B∈Bm,l

∣∣ν(Xt..n, B) − ρ ′(B)
∣∣ ≤ ε. (25)

Since t − b ≥ ζn for all b ∈ 1..(θ − ζ )n, t ∈ π..(1 − ζ )n, we have n
t−b ≤ 1

ζ
. For all n ≥ T

εζ
, m ∈ 1..T , b ∈ 1..(θ − ζ )n and 

t ∈ π..(1 − ζ )n we have m−1
t−b ≤ m

ζn ≤ ε. Let N := max{N ′, N ′′, T
εζ

}. By (22), (23), (24), (25), for all n ≥ N we have

sup
b∈1..(θ−ζ )n
t∈π..(1−ζ )n

T∑
m,l=1

wm,l

∑
B∈Bm,l

∣∣∣∣ν(Xb..t, B) − π − b

t − b
ρ(B) − t − π

t − b
ρ ′(B)

∣∣∣∣ ≤ 3ε(2 + 1

ζ
).

By this, and the definition of T , for all n ≥ N we have sup b∈1..(θ−ζ )n
t∈π..(1−ζ )n

d̂(Xb..t, π−b
t−b ρ + t−π

t−b ρ ′) ≤ ε(7 + 3
ζ
) and Part (i) follows. 

The proof of the second part is analogous. �
Lemma 3. Consider a sequence x ∈X n, n ∈N with κ change points. Let b := b1, . . . , b|b| ∈ ∪n

i=1{1..n}i , be a sequence of indices with 
min

i∈1..|b|−1
bi+1 − bi ≥ αn for some α ∈ (0, 1), such that for some ζ ∈ (0, 1) we have infk=1..κ,b∈b | 1

n b − θk| ≥ ζ .

(i) With probability 1 we have lim
n→∞ inf

k∈1..κ

x(L(k), R(k)) ≥ δζ where L(k) := max

b≤nθk

{b ∈ b} and R(k) := max
b>nθk

{b ∈ b} denote the 

elements of b that appear immediately to the left and to the right of �nθk� respectively, and δ is the minimum distance between 
the distinct distributions that generate x.

(ii) Assume that we additionally have [ 1
n L(k) − α, 1n R(k) + α] ⊆ [θk−1, θk+1]. With probability 1 we obtain

lim
n→∞ sup

k∈1..κ
|1

n
x(L(k), R(k), α) − θk| = 0.

Proof. (i). Fix some k ∈ 1..κ . Define ck := L(k)+R(k)
2 . To prove Part (i), we show that with probability 1 for large enough n, 

we have

d̂
(

XL(k)..ck , Xck..R(k)

) ≥ δζ. (26)

Fix ε > 0. Let πk := �nθk�, k = 1..κ . To prove (26) for the case where πk ≤ ck we proceed as follows. As follows from the 
assumption of the lemma and the definition of L(·) and R(·), we have R(k) − L(k) ≥ nα, so that R(k) − ck ≥ α

2 n. Since by 
assumption of the lemma we have infk=1..κ,b∈b | 1

n b − θk| ≥ ζ , it follows that πk+1 − ck ≥ (ζ + α
2 )n. Moreover, from the same 

assumption we have πk−L(k)
ck−L(k)

≥ πk−L(k)
n ≥ ζ . Therefore, we obtain

d

(
ρk+1,

πk − L(k)

ck − L(k)
ρk + ck − πk

ck − L(k)
ρk+1

)
= πk − L(k)

ck − L(k)
d
(
ρk+1,ρk

) ≥ δζ. (27)

From the definition of L(k) and R(k), and our assumption that πk ≤ ck , the segment Xck ..R(k) is fully generated by ρk+1. By
Part (ii) of Lemma 1, there exists some N1 such that for all n ≥ N1 we have

d̂
(

Xck..R(k), ρk+1
) ≤ ε. (28)

By Part (i) of Lemma 2 there exists some N2 such that for all n ≥ N2 we have

d̂

(
XL(k)..ck ,

πk − L(k)

ck − L(k)
ρk + ck − πk

ck − L(k)
ρk+1

)
≤ ε. (29)

By (29) and (27) for all n ≥ maxi=1,2 Ni we obtain
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x (L(k), R(k)) ≥ d̂
(

XL(k)..ck ,ρk+1
) − d̂

(
Xck..R(k), ρk+1

)

≥ d

(
ρk+1,

πk − L(k)

ck − L(k)
ρk + ck − πk

ck − L(k)
ρk+1

)

− d̂

(
XL(k)..ck ,

πk − L(k)

ck − L(k)
ρk + ck − πk

ck − L(k)
ρk+1

)
− d̂

(
Xck..R(k), ρk+1

) ≥ δζ − 2ε. (30)

Since (30) holds for every ε > 0, this proves (26) in the case where πk ≤ ck . The proof for πk > ck is analogous. Since (26)
holds for all k ∈ 1..κ , part (i) follows.
(ii). Fix some k ∈ 1..κ . Following the definition of x given by (9) we have

(L(k) − nα, R(k) + nα,α) := argmax
l′∈L(k)..R(k)

d̂
(

XL(k)−nα..l′ , Xl′..R(k)+nα

)
.

We show that for any β ∈ (0, 1), with probability 1 for large enough n we have

d̂
(

XL(k)−nα..l′ , Xl′..R(k)+nα

)
< d̂

(
XL(k)−nα..πk , Xπk ..R(k)+nα

)
, (31)

for all l′ ∈ L(k)..(1 − β)πk ∪ πk(1 + β)..R(k). To prove (31) for l′ ∈ L(k)..(1 − β)πk we proceed as follows. Fix some β ∈ (0, 1)

and ε > 0. For all l′ ∈ L(k)..(1 − β)πk we have πk−l′
R(k)+nα−l′ ≥ β . Hence, by the definitions of d̂ and δ we obtain

d
(
ρk,ρk+1

) − d

(
ρk,

πk − l′

R(k) + nα − l′
ρk + R(k) + nα − πk

R(k) + nα − l′
ρk+1

)
≥ βδ. (32)

By Part (ii) of Lemma 1, there exists some N1 such that for all n ≥ N1 we have

sup
l′∈L(k)..πk

d̂
(

XL(k)−nα..l′ ,ρk
) ≤ ε, (33)

d̂
(

Xπk ..R(k)+nα,ρk+1
) ≤ ε. (34)

For all l′ ∈ L(k)..πk we have l′ − πk−1 ≥ αn. Also, R(k) + nα ∈ πk + nα..πk+1. Therefore by Part (ii) of Lemma 2 there exists 
some N2 such that

sup
l′∈L(k)..πk

d̂

(
Xl′..R(k)+nα,

πk − l′

R(k) + nα − l′
ρk + R(k) + nα − πk

R(k) + nα − l′
ρk+1

)
≤ ε. (35)

By (33), (34) and the triangle inequality, for all n ≥ maxi=1,2 Ni we obtain

d̂
(

XL(k)−nα..πk , Xπk ..R(k)+nα

) ≥ d̂
(
ρk,ρk+1

) − 2ε. (36)

By (33), (35), and using the triangle inequality, for all n ≥ maxi=1,2 Ni we obtain

sup
l′∈L(k)..(1−β)πk

d̂
(

XL(k)−nα..l′ , Xl′..R(k)+nα

)

≤ sup
l′∈L(k)..(1−β)πk

d

(
ρk,

πk − l′

R(k) + nα − l′
ρk + R(k) + nα − πk

R(k) + nα − l′
ρk+1

)
+ 2ε. (37)

Finally, from (36), (37) and (32) for all n ≥ maxi=1,2 Ni we obtain

inf
l′∈L(k)..(1−β)πk

d̂
(

XL(k)−nα..πk , Xπk ..R(k)+nα

) − d̂
(

XL(k)−nα..l′ , Xl′..R(k)+nα

) ≥ βδ − 4ε. (38)

Since (38) holds for every ε > 0, this proves (31) for l′ ∈ L(k)..(1 − β)πk , k ∈ 1..κ . The case where l′ ∈ (1 + β)πk..R(k) is 
analogous; Part (ii) follows. �
Proof of Theorem 1. On each iteration on j ∈ 1.. log n the algorithm produces a set of estimated change points. We show that 
on some iterations these estimates are consistent, and that estimates produced on the rest of the iterations are negligible. 
To this end, we will partition the set of iterations into three sets as described in Steps 1–3 below.

Define ζ(t, j) := mink∈1..κ,i∈0..� 1
α j

− 1
t+1 � |α j(i + 1

t+1 ) − θk|, j = 1.. log n, t ∈ 1..κ + 1; for all i = 0..� 1
α j

− 1
t+1 � we have 

|bt, j
i − πk| ≥ nζ(t, j).

Step 1. Fix ε > 0. There exist some Jε such that 
∑∞

j= Jε w j ≤ ε. Jε is used to cut off the iterations over j ∈ [1.. log n] where 
λ j is too small for the estimates of the distributional distance between the segments to be consistent (the grids are too 
fine). These iterations are penalised by small weights w j , so that the corresponding candidate estimates become negligible 
(their combined weight is less than ε).
Step 2. Let J (λmin) := − log(λmin/3), where λmin is given by (6). The iterations on j for j ∈ [ J (λmin), Jε] correspond to 
iterations where λ j ∈ (0, λmin] and, moreover, the segments are long enough for the estimates to be consistent as we 
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show below. For all j ≥ J (λmin) and t ∈ 1..κ + 1, and every θk , k ∈ 1..κ we have [ 1
n L(k) − α j, 1n R(k) + α j] ⊆ [θk−1, θk+1]

where L(·) and R(·) are defined in Lemma 3. For every fixed j ∈ J (λmin).. Jε we identify a subset T ( j) of the iterations 
on t = 1..κ + 1 at which the change point parameters θk , k = 1..κ are estimated consistently and the performance scores 
γ (t, j), j ∈ J (λmin).. Jε , t ∈ T ( j) are bounded below by a nonzero constant. Moreover, we show that if the set T ′( j) :=
{1..κ + 1} \ T ( j) is nonempty, the performance scores γ (t, j) for all j ∈ J (λmin).. Jε and t ∈ T ′( j) are arbitrarily small.
i. To define T ( j) we proceed as follows. For every fixed j ∈ J (λmin).. Jε , for every θk , k = 1..κ we can uniquely define qk ∈ N

and pk ∈ [0, α j) so that θk = qkα j + pk . Therefore, for any p ∈ [0, α j) with p �= pk , k = 1..κ , we have infk=1..κ,i∈N∪{0} |iα j +
p − θk| > 0. Since we can only have κ distinct residues pk , k = 1..κ , any set of κ + 1 different elements of [0, α j) contains 
at least one element p′ such that p′ �= pk , k = 1..κ . So, for every j ∈ J (λmin).. Jε there exists at least one t ∈ 1..κ + 1 such 
that ζ(t, j) > 0. For every j ∈ J (λmin).. Jε , define

T ( j) := {t ∈ 1..κ + 1 : ζ(t, j) > 0} . (39)

Let ζ̄ ( j) := mint∈T ( j) ζ(t, j) and define ζmin := inf j∈ J (λmin).. Jε ζ̄ ( j). Note that ζmin > 0. By Part (i) of Lemma 3, for all j ∈
J (λmin).. Jε there exists some N1( j) such that for all n ≥ N1( j) we have

inf
t∈T ( j)

γ (t, j) ≥ δζ̄ ( j), (40)

where δ is the minimum distance between the distinct distributions. As specified by Algorithm 1 we have η :=
log n∑
j=1

κ+1∑
t=1

w jγ (t, j). By (40) for all n ≥ N1( Jλmin ) we have

η ≥ w J (λmin)δζ̄ ( Jλmin), (41)

which does not depend on ε. By Part (ii) of Lemma 3, there exists some N2( j) such that for all n ≥ N2( j) we have

sup
k∈1..κ,t∈1..T ( j)

1

n

∣∣∣π̂ t, j
k − πk

∣∣∣ ≤ ε. (42)

ii. Define T ′( j) := {1..κ + 1} \ T ( j) for j ∈ J (λmin).. Jε , where T ( j) is given by (39). It may be possible for the set T ′( j) to 
be nonempty on some iterations on j ∈ J (λmin).. Jε . Observe that by definition, for all j ∈ J (λmin).. Jε such that T ′( j) �= ∅, 
we have maxt∈T ′( j) ζ(t, j) = 0. This means that on each of these iterations, there exists some πk for some k ∈ 1..κ such that 
πk = b for some grid boundary

b ∈
{

bt, j
i := nα j(i + 1

t + 1
), i = 0..� 1

α j
− 1

t + 1
�, α j = λ j/3, t ∈ T ′( j)

}

where the boundaries are specified by Line 6 of Algorithm 1. Since λ j ≤ λmin for all j ∈ J (λmin).. Jε , and that b = πk we have 
b..b + nλ j ⊆ πk..πk+1 and b − nλ j ⊆ πk−1..πk . That is, the segments Xb..b+nλ j and Xb−nλ j ..b are between two consecutive 
change points and are thus each generated by a single process distribution. Following Lines 6 to 9 of Algorithm 1, it 
is easy to see that in this case γ (t, j) corresponds to max{
x(b, b + nλ j), 
x(b − nλ j, b)}. Since b = πk , by Part (iii) of 
Lemma 1 there exists some N3( j) such that for all n ≥ N3( j) we have max{
x(b − nλ j, b), 
x(b, b + nλ j)} ≤ ε. Thus, for 
every j ∈ J (λmin).. Jε and all n ≥ N3( j) we have

sup
t∈T ′( j) �=∅

γ (t, j) ≤ ε. (43)

This scenario is depicted in Fig. 4.
Step 3. Consider, j = 1.. J (λmin) − 1. It is desired for a grid to be such that every three consecutive segments contain at 
most one change point. This property is not satisfied for j = 1.. J (λmin) − 1 since, by definition, on these iterations we have 
α j > λ j/3. We show that for all these iterations, the performance score γ (t, j), 1..κ +1 becomes arbitrarily small; see Fig. 5. 
For all j = 1.. J (λmin) − 1 and t = 1..κ + 1, define the set of intervals St, j := {(bt, j

i , bt, j
i+3) : i = 0..� 1

α j
− 1

t+1 � − 3} and consider 
its partitioning into

St, j
l :=

{(
bt, j

l+3i′ ,bt, j
l+3(i′+1)

)
: i′ = 0..

1

3

(⌊
1

α j
− 1

t + 1

⌋
− l

)}
, l = 0..2.

Observe that, by construction, for every fixed l = 0..2, every pair of indices (b, b′) ∈ St, j
l specifies a segment Xb..b′ of length 

3nα j and the elements of St, j
l index non-overlapping segments of x. Since for all j = 1.. J (λmin) − 1 we have α j > λ j/3, 

j ∈ 1.. J (λmin) − 1 and t ∈ 1..κ + 1, there exists some (b, b′) ∈ St, j such that Xb..b′ contains more than one change point. 
Since there are exactly κ change points, in at least one of the partitions St, j

l for some l ∈ 0..2 we have that within any set 
of κ segments there exists at least one segment that contains no change points. Note that, as specified by Lines 6–11 of 
Algorithm 1, we have
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Fig. 4. The case considered in Step 2.ii of the proof: λ j < λmin and since the algorithm sets the spacing α j between consecutive boundaries to λ j/3, 
every three consecutive segments contain at most one change point. In the particular case depicted, one of the grid boundaries lies exactly on some change 
point πk . As follows from Step 2.ii, the grid score γ assigned to such iterations converges to zero.

Fig. 5. Top. Desired iteration where every three consecutive grid segments contain at most one change point. Bottom. Undesired iteration where some groups 
of three consecutive grid segments may contain more than one change points. As follows from Step 2.i and Step 3, the algorithm indirectly distinguishes 
between the two scenarios. Specifically, in the former case the grid performance score γ converges to a non-zero constant, while in the latter, it converges 
to zero.

γ (t, j) := min
l=0..2

{

x(b,b′) : (b,b′) ∈ St, j

l s.t.
∣∣∣{(a,a′) ∈ St, j

l : 
x(a,a′) > 
x(b,b′)
}∣∣∣ = κ − 1

}
.

Therefore, by Part (iii) of Lemma 1, for every j ∈ 1.. J (λmin) − 1 there exists some N( j) such that for all n ≥ N( j) we have

sup
t∈1..κ+1

γ (t, j) ≤ ε. (44)

Combining the steps. Let N := max{max j=1.. J (λmin)−1 N( j), max i=1..3
j= J (λmin).. Jε

Ni( j)} (note that the ranges of the max operators 

are finite, so N is well defined). By (41), the definition of Jε , and that γ (·, ·) ≤ 1, for all n ≥ N we have

1

nη

log n∑
j= Jε

κ+1∑
t=1

w jγ (t, j)
∣∣∣πk − π̂

t, j
k

∣∣∣ ≤ ε(κ + 1)

w J (λmin)δζ̄ ( J (λmin))
. (45)

Note that η := ∑log n
j=1

∑κ+1
t=1 w jγ (t, j); by (41), (42) for all n ≥ N we have

1

nη

Jε∑
j= J (λmin)

∑
t∈T ( j)

w jγ (t, j)
∣∣∣πk − π̂

t, j
k

∣∣∣ ≤ ε. (46)

By (41), (43) and (44) for all n ≥ N we obtain

1

nη

log n∑
j= Jε

∑
t∈T ′( j)

w jγ (t, j)|πk − π̂
t, j
k | ≤ ε(κ + 1)

w J (λmin)δζ̄ ( J (λmin))
, (47)

1

nη

J (λmin)−1∑
j=1

κ+1∑
t=1

w jγ (t, j)|πk − π̂
t, j
k | ≤ ε(κ + 1)

w J (λmin)δζ̄ ( J (λmin))
. (48)

Let θ̂k(n) := π̂k
n , k = 1..κ . By (45), (46), (47) and (48) we have

|θ̂k(n) − θk| ≤ 1

nη

J (λmin)−1∑
j=1

κ+1∑
t=1

w jγ (t, j)|πk − π̂
t, j
k |

+ 1

nη

Jε∑
j= J (λmin)

∑
t∈T ( j)

w jγ (t, j)|πk − π̂
t, j
k |

+ 1

nη

Jε∑
j= J (λmin)

∑
t∈T ′( j)

w jγ (t, j)|πk − π̂
t, j
k |

+ 1

nη

log n∑ κ+1∑
w jγ (t, j)|πk − π̂

t, j
k |
j= Jε t=1



A. Khaleghi, D. Ryabko / Theoretical Computer Science 620 (2016) 119–133 133
≤ ε

(
1 + 3(κ + 1)

w J (λmin)δζ̄ ( J (λmin))

)
.

Since the choice of ε is arbitrary, the statement of the theorem follows. �
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