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The paper interprets the cubic nonlinear Schrödinger equation as a Hamiltonian system with infinite dimensional phase
space. There exists a Gibbs measure which is invariant under the flow associated with the canonical equations of
motion. The logarithmic Sobolev and concentration of measure inequalities hold for the Gibbs measures, and here are
extended to the k-point correlation function and distributions of related empirical measures. By Hasimoto’s theorem,
NLSE gives a Lax pair of coupled ODE for which the solutions give a system of moving frames. The paper studies the
evolution of the measure induced on the moving frames by the Gibbs measure; the results are illustrated by numerical
simulations. The paper contains quantitative estimates with well-controlled constants on the rate of convergence of the
empirical distribution in Wasserstein metric.

I. INTRODUCTION

Consider the Hamiltonian

H3 =
1
2

∫
T

((
∂P
∂x

)2
+
(

∂Q
∂x

)2)
dx+

β

2γ

∫
T

(
P2 +Q2)γ dx, (1.1)

on T= R/2πZ which gives the canonical equations of motion[
0 1
−1 0

]
∂

∂ t

[
Q
P

]
=− ∂ 2

∂x2

[
Q
P

]
+β (P2 +Q2)γ−1

[
Q
P

]
(1.2)

so u = P+ iQ satisfies the nonlinear Schrödinger equation

i
∂u
∂ t

=−∂ 2u
∂x2 +β |u|2(γ−1)u. (1.3)

When γ = 2, we have the cubic nonlinear Schrödinger equation. The spatial variable is x ∈ T, and the functions are periodic, so
that the system applies to fields parametrized by a circle. Throughout the paper, we write (M,d,µ) for a complete and separable
metric space with a Radon (inner regular) probability measure µ on the σ -algebra generated by the Borel subsets. The squared
L2 norm H1 =

∫
(P2 +Q2) is formally invariant under the canonical equations of motion, so we can consider possible invariant

measures on

BK =
{

u = P+ iQ : P,Q ∈ L2(T;R) :
∫
T
(P2 +Q2)dx≤ K

}
. (1.4)

The Gibbs measure on BK for this micro-canonical ensemble is

µK,β (du) = ZK(β )
−1IBK (u)exp

(
−β

4

∫
T
|u|4dx

)
W (du) (1.5)

where W (du) is Wiener loop measure, IBK is the indicator function of BK and ZK(β ) is a normalizing constant. Lebowitz, Rose
and Speer31 proved existence of such an invariant measure, so that for all K > 0 and β ∈ R there exists ZK(β ) > 0 such that
µK,β is a Radon probability measure on BK ⊂ L2(T;R2). When β = 0, we refer to the measure as free Wiener loop measure,
indicating that the dynamics are free of potentials. For β < 0, (1.3) is said to be focussing and the Hamiltonian is unbounded
below, giving the source of the technical problem, which is addressed by restricting the measure to BK .

Bourgain12 gave an alternative existence proof using random Fourier series, and showed that the measure is invariant under
the flow in the sense that the Cauchy problem is well posed on the support. Further refinements include a result of McKean36,
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Hasimoto frames and the Gibbs measure of the periodic NLSE 2

that the sample paths are Hölder continuous, and a result from Theorem 1.2(iv) in Ref.9 that the invariant measure of the micro-
canonical ensemble satisfies a logarithmic Sobolev inequality. Random Fourier series fit naturally into Sturm’s theory of metric
measure spaces, which we use to reduce some of the analysis to invariant measures on finite-dimensional Hamiltonian systems.

The focusing case for spatial variable x ∈R captures soliton solutions, and Ref.31 discuss the possible transition of the system
between an ambient bounded random field and a soliton solution. For x ∈ T, the notion of a spatially localized solution is
inapplicable, but some of the results are still relevant31.

Bourgain13 page 128 comments that invariant Gibbs measures for the periodic cubic Schrödinger equation can be constructed
on other phase spaces, and one can consider Gibbs measures on L2 that have different normalizations than µK,β .

In section two, we consider tensor products of Hilbert space H and a k-point density matrix. For µ0 a centered Gaussian
measure on H, we express a specific integral

J(k) =
∫

H
|u⊗k〉〈u⊗k|µ0(du)

as a series of elementary tensors. This calculation involves combinatorial results which are expressed in terms of Knuth’s odd
and even decompositions of Young diagrams. In section three, we use concentration of measure results to show how |u⊗k〉〈u⊗k|
is close to its mean value J(k) on a set of large probability. This statement also holds when we replace µ0 by the Gibbs measure.

In section 4 we introduce metric probability measure spaces and show how the infinite-dimensional dynamical system (1.2)
can be approximated by finite-dimensional dynamical systems, particularly involving random Fourier series. In particular, we
show that x 7→ u(x, t) is γ-Hölder continuous for 0 < γ < 1/16, in the sense that sup{‖u(x+ h, t)− u(x, t)‖L4

x
/|h|γ);h 6= 0} is

almost surely finite, for fixed 0 < t0 < t.
We also obtain results on the empirical distributions that arise when we sample solutions of (1.2) with respect to Gibbs measure

(1.5), which we use in the numerical experiments in section 7.
Hasimoto25 observed that (1.2) can be expressed as a Lax pair of coupled ordinary differential equations with solutions in

SO(3), one of which is the Serret-Frenet system for a moving frame on a curve in R3. Cruzeiro and Malliavin17 developed
stochastic differential geometry for frames, pursuing Cartan’s precedent15. In sections 5 and 6 we consider the evolution of the
dynamical system corresponding to Hasimoto frames under the Gibbs measure. In section 7 we present numerical experiments
regarding the solutions, which illustrate the nature of frames that arise from the solutions of (1.2) for typical elements in the
support of the Gibbs measure (1.5). In the appendix25, Hasimoto expressed the change of variables in a polar decomposition
u =
√

ρ exp(iφ) where ρ is a probability density and φ a phase, and derived Betchov’s intrinsic equation for vortex filaments
from the nonlinear Schrödinger equation. We remark that Villani42 page 691 carries out a similar a transformation to interpret
the linear Schrödinger equation as a transport problem for densities ρ for a suitable action integral. The current paper is a further
step at introducing transportation methods into PDE.

II. TENSOR PRODUCTS AND k-POINT DENSITY MATRICES FOR GAUSSIAN MEASURE

Let H be a separable complex Hilbert space, with inner product 〈· | ·〉 which is linear in the second argument. The algebraic
tensor product H⊗H is identified with the set of finite-rank operators on H, and then we identify the injective tensor product
H⊗̌H with the algebra L (H) of bounded linear operators on H and the projective tensor product H⊗̂H with the ideal L 1(H) of
trace class operators on H. By the theory of metric tensor products the dual space of L 1(H) is canonically L (H). For H = L2,
the identification is

f ⊗ ḡ =| f 〉〈g |: h 7→ f (x)
∫

ḡ(y)h(y)dy.

Let A ∈L 1(H) be self-adjoint such that 0 ≤ A ≤ I, and let µ0 be a Gaussian measure on H of mean zero and covariance A.
By the spectral theorem, We can choose an orthonormal basis (ϕ j)

∞
j=1 of H such that Aϕ j = α jϕ j where the spectrum of A is

the closure of {α j : j = 1,2, . . .}. Then we introduce mutually independent Gaussian N(0,1) random variables (γ j)
∞
j=1 and the

vector

u =
∞

∑
j=1

√
α jγ jϕ j (2.1)
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Hasimoto frames and the Gibbs measure of the periodic NLSE 3

so that µ0 is the distribution of u on H, as one easily checks by computing the expectation

Eexp(i〈 f ,u〉) = Eexp
(
∑

j
i
√

α j〈 f ,ϕ j〉γ j

)
= exp

(
∑

j
−1

2
α j〈 f ,ϕ j〉2

)
= exp

(
−1

2
〈A f , f 〉

)
( f ∈ H). (2.2)

Hence A is the mean of rank-one tensors with respect to Gaussian measure

A =
∫

H
| u〉〈u | µ0(du).

The k-fold tensor product H⊗k can be completed to give a Hilbert space, so that the space Hs⊗k of symmetric tensors gives a
closed linear subspace. We consider

J(k) =
∫

H
|u⊗k〉〈u⊗k|µ0(du).

An element of H⊗k⊗̂H⊗k determines a linear operator L (H⊗k), commonly referred to as a matrix, so J(k) ∈ (L2)s⊗k⊗̂(L2)⊗k

gives a k-point density matrix, or equivalently a trace class operator J(k) ∈L 1(Hs⊗k) . The following computation of Gaussian
moments is known in Quantum field theory as Wick’s theorem.

Lemma 3.3 of32 contains calculations regarding J(k) which we have not been able to interpret, particularly line 8 of page 79.
Here we calculate J(2) directly, before addressing the case of general k. Evidently we have E(γ jγ`γmγn) = 0 if one of the indices
j, `,m,n is distinct from all the others; otherwise, we have all the indices equal, or two distinct pairs of equal indices. Hence we
have ∫

H
| u⊗u〉〈u⊗u | µ0(du) = ∑

j,`,m,n

√
α jα`αmαn | ϕ j⊗ϕ`〉〈ϕm⊗ϕn | E(γ jγ`γmγn)

= ∑
j

3α
2
j | ϕ j⊗ϕ j〉〈ϕ j⊗ϕ j |

+ ∑
j,`: j 6=`

α jα` | ϕ j⊗ϕ`〉〈ϕ j⊗ϕ` |

+ ∑
j,m: j 6=m

α jαm | ϕ j⊗ϕ j〉〈ϕm⊗ϕm |

+ ∑
j,`: j 6=`

α jα` | ϕ j⊗ϕ`〉〈ϕ`⊗ϕ j | (2.3)

and we combine the second and fourth of these to obtain∫
H
| u⊗u〉〈u⊗u | µ0(du) = ∑

j
3α

2
j | ϕ j⊗ϕ j〉〈ϕ j⊗ϕ j |

+
1
2 ∑

j,`: j 6=`

α jα` | ϕ j⊗ϕ`+ϕ`⊗ϕ j〉〈ϕ j⊗ϕ`+ϕ`⊗ϕ j |

+ ∑
j,m: j 6=m

α jαm | ϕ j⊗ϕ j〉〈ϕm⊗ϕm | (2.4)

which exhibits the right-hand side as a symmetric tensor, in which the final term shows the integral is not diagonal with respect
to the orthonormal basis {

ϕ j⊗ϕ j, (ϕ j⊗ϕ`+ϕ`⊗ϕ j)/
√

2; j, ` ∈ N; j 6= `
}

of the symmetric tensor product H⊗s H, hence J(2) is not a multiple of A⊗A.
For k ∈ N, let Πk be the set of all partitions of k so that π ∈ Πk may be expressed as k = k1 + k2 + · · ·+ kn where the row

lengths k j ∈ N have k1 ≥ k2 ≥ ·· · ≥ kn. Given such π and a n-element subset { j1, . . . , jn} of N, there is a symmetric tensor

1√
n! ∑

σ

ϕ
⊗k1
σ( j1)
⊗·· ·⊗ϕ

⊗kn
σ( jn)

∈ H⊗k
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Hasimoto frames and the Gibbs measure of the periodic NLSE 4

where the sum is over all the permutations σ of { j1, . . . , jn}. The set of all such tensors gives an orthonormal basis of the k-fold
symmetric tensor product Hs⊗k.

We express u as in (2.1) and consider the expansion

| u⊗k〉〈u⊗k | = ∑
(m1,...,m2k)∈N2k

√
αm1 . . .αm2k γm1 . . .γm2k | ϕm1 ⊗·· ·⊗ϕmk〉〈ϕmk+1 ⊗·· ·⊗ϕm2k | (2.5)

in terms of this orthonormal basis of Hs⊗k, and look for the terms that do not vanish after integration with respect to µ0.

Definition II.1. (even decomposition) Given π ∈ Πk consider a pair (λ ,ρ) ∈ Π2
k with rows λ : k = `1 + `2 + · · ·+ `n where

` j ∈ N∪{0} and ρ : k = r1 + r2 + · · ·+ rn where r j ∈ N∪{0} and

2k j = ` j + r j ( j = 1, . . . ,n),

so that λ and ρ have equal numbers of odd rows; here rows may have zero lengths, and the rows are not necessarily in decreasing
order. We refer to (λ ,ρ) as an even decomposition of π .

Remark II.2. There are various alternative descriptions of even decompositions. We write λ ∼ ρ if λ and ρ are partitions that
have equal numbers of boxes and equal numbers of odd rows; evidently ∼ is an equivalence relation on the set of partitions.
By29 Theorem 4 there is a bijection between symmetric matrices A that have entries in N∪{0} with column sums c1, . . . ,cn and
Young tableaux P such that have c j occurrences of j as entries and number of columns of P of odd length equals the trace of A.
Given symmetric matrices A and B with entries in N∪{0} such that A and B have equal traces and equal totals of entries, then
the RSK correspondence takes A to P and B to Q where P and Q are Young tableaux with an equal number of boxes, and their
transposed diagrams P′ and Q′ have an equal number of odd rows, so P′ ∼ Q′.

For notational convenience, we also regard ϕ
⊗0
j as a factor which may be omitted in tensor products. Then given such a triple

(π,λ ,ρ) and an n-subset { j1, . . . , jn} of N,

α
k1
j1
. . .αkn

jn | ϕ
⊗`1
j1
⊗·· ·⊗ϕ

⊗`n
jn 〉〈ϕ

⊗r1
j1
⊗·· ·⊗ϕ

⊗rn
jn | E

(
γ

2k1
j1

γ
2k2
j2

. . .γ2kn
jn

)
(2.6)

where

E
(
γ

2k1
j1

γ
2k2
j2

. . .γ2kn
jn

)
=

n

∏
j=1

(2k j)!
2k j k j!

(2.7)

gives a nonzero summand in J(k).
Conversely, let (λ ,ρ) ∈ Π2

k and suppose that λ and ρ have equal numbers of odd rows, so that after adding zero rows
and reordering the rows we have r j + ` j even for all j. Then we introduce 2k j = ` j + r j and after a further reordering write
k = k1 + k2 + · · ·+ kn where k j ∈ N have k1 ≥ k2 ≥ ·· · ≥ kn, and we have π ∈ Πk as above. Given a n-subset { j1, . . . , jn} of N,
we take 2km copies of jm and split them as `m on the bra side and rm on the ket side of the tensor for m = 1, . . . ,n, making a
contribution as in (2.6). We summarize these results as follows.

Proposition II.3. The integral J(k) is the sum over the summands (2.6) that arise from a π ∈Πk with n nonzero rows, a n-subset
of N, and an even decomposition of π into a pair (λ ,ρ) ∈Π2

k where λ and ρ have equal numbers of odd rows.

III. CONCENTRATION OF k-POINT MATRICES FOR GIBBS MEASURE

Let H = L2(T;R) and let (γ j) j∈Z be mutually independent Gaussian N(0,1) random variables on some probability space
(Ω,P), where z j = (γ j + iγ− j)/

√
2) and z− j = (γ j− iγ− j)/

√
2 for j ∈ N. Then we take Brownian loop to be the random Fourier

series in the style

u(θ) = ∑
j∈Z\{0}

z jei jθ

| j|
, (3.1)

so that Wiener loop W (du) is the distribution of u ∈ H, namely the probability measure induced by random variable u via
(Ω,P)→ (H,W ). By orthogonality, we have ∫

T
|u(θ)|2 dθ

2π
= ∑

j∈Z\{0}

|z j|2

j2 (3.2)
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Hasimoto frames and the Gibbs measure of the periodic NLSE 5

so that u ∈ BK/2π if and only if ∑ j γ2
j / j2 ≤ K. Chernoff’s inequality, and independence we have

P

[
∑

j∈Z\{0}

γ2
j

j2 ≥ K

]
≤ e−tK π

√
2t

sin(π
√

2t)
(0 < t < 1/2,K > 0). (3.3)

The low Fourier modes are the predominant terms since one has the estimate

P

[
∑

j∈Z;| j|≥m

γ2
j

j2 ≥ K

]
≤ exp

(
m−Km2/4

)
(m ∈ N,K > 0), (3.4)

which also follows from Chebyshev’s inequality and independence.
Let µλ (du) = ζ (λ )−1 exp(λV (u))W (du) where

ζ (λ ) =
∫

BK

exp(λV (u))W (du)

so that µλ is a probability measure; we can take V (u) =
∫
T u(θ)4dθ/(2π) and W to be Brownian loop measure. Here µλ is

Gibbs measure (1.5) with the inverse temperature β , but we prefer to work with λ = −β > 0 so that the convexity statements
are easier to interpret.

Theorem III.1. Under the family of Gibbs measures (1.5) associated with NLS (1.3), the random variable u 7→ 〈u⊗k | T | u⊗k〉
with u ∈ (BK ,L2,µλ ) and T ∈L (Hs⊗k) satisfies a Gaussian concentration of measure (3.6), the mean is a Lipschitz continuous
function of β , and the mean for β = 0 is a sum over partitions of 2k over even decompositions.

The statements in this theorem will be proved in this section. They involve the integral

G(k)
λ

=
∫

BK

| u⊗k〉〈u⊗k | µλ (du) (3.5)

where µλ is the Gibbs measure for NLS. In the defocussing case, the k-particle density matrix of an interacting quantum system
with suitable initial conditions converges to its classical analogue see Ref.1 (2.16) for the 1D case and Ref.33 for 2D and 3D.

We can write u = P+ iQ for real variables (P,Q) and interpret 〈u⊗k | T | u⊗k〉 as a homogeneous polynomial in (p,q) of total
degree 2k. The following result gives concentration of measure for Lipschitz functions on (BK ,L2,µλ ), and shows that k-point
matrices are concentrated near to their mean value.

Proposition III.2. For T ∈L (Hs⊗k) with operator norm ‖T‖, let gT : BK → C by gT (u) = 〈u⊗k | T | u⊗k〉. Then there exists
α = α(β ,K)> 0 such that

µλ

({
u ∈ BK : |gT (u)− trace(G(k)

λ
T )|> r

})
≤ 4exp

( −αr2

32k2K2k−1‖T‖2

)
(r > 0). (3.6)

Proof. Here gT has mean value ∫
BK

gT (u)µλ (du) =
∫

BK

〈u⊗k | T | u⊗k〉µλ (du) = trace(G(k)
λ

T ). (3.7)

Also gT is Lipschitz, with

|gT (u)−gT (v)| ≤ ‖T‖
2k−1

∑
j=0
‖u‖ j‖v‖2k− j−1‖u− v‖ ≤ 2kKk−1/2‖T‖‖u− v‖ (u,v ∈ BK). (3.8)

By the logarithmic Sobolev inequality Theorem 1.2(iv) of9, there exists α = α(K,β )> 0 such that∫
BK

f (u)2 log f (u)2
µλ (du)≤

∫
BK

f (u)2
µλ (du) log

(∫
BK

f (u)2
µλ (du)

)
+

2
α

∫
BK

‖∇ f‖2
µλ (du) (3.9)

for all continuously differentiable f : BK → R, where ∇ refers to the Fréchet derivative. In particular, we choose

f (u) = exp
(
r Re

(
gT (u)− trace(G(k)

t T )
)
/2
)
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Hasimoto frames and the Gibbs measure of the periodic NLSE 6

and we deduce that the moment generating function

ϕ(r) =
∫

BK

exp
(

r Re
(
gT (u)− trace(G(k)

λ
T )
))

µλ (du) (3.10)

satisfies ϕ(0) = 1,

ϕ
′(0) =

∫
BK

Re
(
gT (u)− trace(G(k)

λ
T )
)
µλ (du) = 0,

hence r−1 logϕ(r)→ 0 as r→ 0+. The differential inequality

rϕ
′(r)≤ ϕ(r) logϕ(r)+

8k2K2k−1‖T‖2r2

α
ϕ(r) (3.11)

follows directly from (3.9), hence

d
dr

( logϕ(r)
r

)
≤ 8k2K2k−1‖T‖2

α
,

so we obtain the concentration inequality

ϕ(r)≤ exp
(8k2K2k−1‖T‖2r2

α

)
(r ≥ 0). (3.12)

One can conclude the proof by a standard application of Chebyshev’s inequality to the integral for ϕ in (3.10).

To make full use of the previous result, one needs to know the mean trace(G(k)
λ

T ) as in (3.7), which depends upon the measure
in (3.5). The following shows how the mean can vary with the inverse temperature β =−λ .

Proposition III.3. For g : BK → R an L-Lipschitz function, the mean values of g with respect to the measures µλ satisfy(∫
BK

g(u)
(
µb(du)−µa(du)

))2
≤ L2(b−a)2

2α

∫ ∫
BK×BK

(V (u)−V (w))2
µλ (du)µλ (dw) (3.13)

where α is the constant in (3.9) for µa, and some λ ∈ (a,b).

Proof. We observe that logζ (λ ) is a convex function of λ > 0 and by the mean value theorem, there exists a < λ < b such that

logζ (a)− logζ (b) =−(b−a)
ζ ′(b)
ζ (b)

+
(b−a)2

2

(
ζ ′′(λ )

ζ (λ )
− ζ ′(λ )2

ζ (λ )2

)
=−(b−a)

∫
BK

V (u)µb(du)+
(b−a)2

4

∫ ∫
BK×BK

(V (u)−V (w))2
µλ (du)µλ (dw). (3.14)

Let W1(µa,µb) be the Wasserstein transportation distance between µb and µa for the cost function ‖u− v‖L2 , as in page 34 of
Ref.41. Then by duality we have ∣∣∣∫

BK

g(u)µb(du)−
∫

BK

g(u)µa(du)
∣∣∣≤ LW1(µb,µa).

By results of Otto and Villani discussed in Ref.41 pages 291-2, the logarithmic Sobolev inequality of Theorem 1.2(iv) Ref.9

implies a transportation cost inequality

W1(µb,µa)≤
( 2

α
Ent(µb | µa)

)1/2
(3.15)

in the style of Talagrand, where the relative entropy is

Ent(µb | µa) =
∫

BK

log
dµb

dµa
µb(da)

= (b−a)
∫

BK

V (u)µb(du)− (logζ (b)−ζ (a))

=
(b−a)2

4

∫ ∫
BK×BK

(V (u)−V (w))2
µλ (du)µλ (dw), (3.16)

where the final step follows from (3.14). The stated result follows on combining these inequalities.
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Hasimoto frames and the Gibbs measure of the periodic NLSE 7

Proposition III.4. The integral G(k)
0 from (3.5) is the sum over the terms (2.6) that arise from a π ∈Πk with n nonzero rows, a

n-subset of N, and an even decomposition of π into a pair (λ ,ρ) ∈Π2
k where λ and ρ have equal numbers of odd rows.

Proof. The measure µ0 is a Wiener loop measure restricted to Bk. For any sequence (εn)n∈Z ∈ {±1}Z, the sequence (γn)n∈Z
with γn mutually independent N(0,1) Gaussian random variables has the same distribution as the sequence (εnγ)n∈Z. Also, the
condition ∑n∈Z\{0} γ2

n/n2 ≤ K does not change under this transformation. Let uε(θ) = ∑
′
j ε jζ jei jθ/| j|. We therefore have

G(k)
0 =

∫
BK

∫
{±1}Z

| u⊗k
ε 〉〈u⊗k

ε | dεµ0(du)

where dε is the Haar probability measure on the Cantor group {±1}Z. The measure on {±} is associated with tossing a fair coin,
and Haar measure is the product of such probability measures. We can therefore compute the inner integral in this expression
for G(k)

0 by the same calculation that led to the corresponding statement for J(k), since we only used the even decomposition of
partitions to derive (2.6).

We have [
∑

j∈Z\{0}

γ2
j

j2 ≤ K

]
⊆

⋂
j∈Z\{0}

[
γ

2
j ≤ K j2

]
(3.17)

where the sets are independent under the Gaussian measure dP, so we have a substitute for (2.7). Conditioning on the event BK ,∫
BK

γ
2k1
j1

γ
2k2
j2

. . .γ2kn
jn µ0(du)≤ P(BK)

−1
n

∏
`=1

∫
[γ2≤K j2` ]

γ
2k`dP, (3.18)

where P(BK) satisfies (3.3) and there is an approximate formula

∫
[γ2≤K j2` ]

γ
2k`dP=

(2k`)!
2k`k`!

exp
(
−
( j2

`K
2

)k`−1/2 e− j2`K/2

Γ(k`+1/2)

)
. (3.19)

IV. CONCENTRATION FOR METRIC MEASURE SPACES

In a similar spirit, we give a concentration result for k-fold stochastic integrals. This result resemble the integrability criteria
of14 which relates to a single variable. Let H1

0 be the homogeneous Sobolev space of v ∈ L2(T;C) that are absolutely continuous
with derivative v′ ∈ L2(T;C) with

∫
T v(x)dx = 0. Let h j ∈ H1

0 for j = 1, . . . ,k be such that ∑
k
j=1
∫
(h′j)

2dx ≤ 1, and consider
Φ : Bk

K 7→ Rk given by

Φ : (u j)
k
j=1 7→

(∫
u j(x)h′j(x)dx

)k

j=1
. (4.1)

The following result describes the distribution of this Ck-valued random variable.

Proposition IV.1. Let νK be the probability measure on Ck that is induced from µ
⊗k
K,β by Φ. Then there exists αK > 0 independent

of k such that ∫
Ck

G(w)2 log
(

G(w)2/
∫

G2dνK

)
νK(dw)≤ 2

αK

∫
Ck
‖∇G(w)‖2

νK(dw) (4.2)

for all G ∈C1
c (Ck;R). The distribution νK has mean x0 and satisfies∫

Ck
et2‖x−x0‖2/2

νK(dx)≤
(

1− t2

α

)−k
(t2 < α). (4.3)

Proof. We observe that for all u = (u j)
k
j=1 ∈ Bk

K and v = (v j)
k
j=1 ∈ Bk

K we have

‖Φ(u)−Φ(v)‖2
Rk ≤

k

∑
j=1

∫
(h′j(x))

2dx
k

∑
j=1

∫
|u j(x)− v j(x)|2dx (4.4)
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Hasimoto frames and the Gibbs measure of the periodic NLSE 8

so Φ : (Bk
K , `

2(L2))→ (Rk, `2) is Lipschitz with constant one. Each metric probability space (BK ,L2,µK,β ) satisfies a logarithmic
Sobolev inequality with constant αK > 0 by Ref.9, and the probability space (Bk

K , `
2(L2),µ⊗k

K,β ) is a direct product of the metric
probability spaces (BK ,L2,µK,β ), hence also satisfies a logarithmic Sobolev inequality

∫
Bk

K

G◦Φ(u)2 log
(

G◦Φ(u)2/
∫

G◦Φ
2dµ

⊗k
K,β

)
µ
⊗k
K,β (du)≤ 2

αK

∫
Bk

K

‖∇G◦Φ(u)‖2
µ
⊗k
K,β (du) (4.5)

with constant αK independent of k, by section 22 of Ref.42.
We introduce x0 =

∫
Ck xνK(dx) and consider

ϕ(t) =
∫
Ck

et Re〈x−x0,y〉νK(dx) (4.6)

which satisfies ϕ(0) = 1, ϕ ′(0) = 0 and the differential inequality

tϕ ′(t)≤ ϕ(t) logϕ(t)+
t2‖y‖2

2α
ϕ(t) (4.7)

follows from (4.2). This gives ∫
Ck

et Re〈x−x0,y〉νK(dx)≤ et2‖y‖2/(2α) (4.8)

which we integrate against e−‖y‖
2/2, where y ∈ Ck = R2k, to obtain∫

Ck
et2‖x−x0‖2/2

νK(dx)≤
(

1− t2

α

)−k
(t2 < α). (4.9)

The probability space (BK ,L2,µK,β ) has a tangent space associated with infinitesimal translations. Let H1 be the Sobolev
space of v ∈ L2(T;C) that are absolutely continuous with derivative v′ ∈ L2(T;C); let H−1 = (H1)∗ be the linear topological
dual space for the pairing 〈v,w〉 7→

∫
T v(x)w(x)dx/(2π) as interpreted via Fourier series. Then there is a Radonifying triple of

continuous linear inclusions

H1→ L2→ (H1)∗ (4.10)

associated with the Gibbs measure µK . The space H1 has orthonormal basis (hn)
∞
n=−∞ = (einθ/

√
n2 +1)∞

n=−∞ and the covariance
matrix of Wiener loop is R0 = diag[1/(1+n2)]∞n=−∞ with respect to this basis. By Cauchy-Schwarz, we have

∞

∑
n=−∞

|〈R0hn,hn〉|=
∫ ∞

∑
n=−∞

|
∫

h jdu|2µK,β (du)

≤
(∫ ∞

∑
n=−∞

(
√

1+n2)1+ε |
∫

h′nu(x)dx|4W (du)
)1/2( ∞

∑
n=−∞

∫
(
√

1+n2)−1−ε

(dµK,β

dW

)2
dW
)1/2

(4.11)

for all ε > 0. By such simple estimates, one can deduce that there exists, for each β and K > 0, a self-adjoint, nonnegative and
trace class operator R such that 〈

R f ,g
〉

H1 =
∫

BK

∫
[0,2π]

f ′udθ

∫
[0,2π]

ḡ′ūdθ µK,β (du), (4.12)

which gives the covariance matrix of the Gibbs measure on H1. This is essentially G(1)
−β

, up to the identification of Hilbert spaces
in (4.10).

Cameron and Martin computed the density with respect to the Wiener measure that results from the linear translation u 7→ u+v
for v ∈ H1; their results extends to Gibbs measure with some modifications.

We momentarily suppress the dependence of functions upon time, and consider for p,q ∈ H1, the linear transformation
P + iQ 7→ P + p + i(Q + q). Cameron and Martin proved that free Wiener measure (β = 0) is mapped to a measure that
absolutely continuous with respect to the free Wiener measure. Likewise, Gibbs measure is mapped to a measure absolutely
continuous with respect to Gibbs measure. The total space of the tangent bundle to the

√
K sphere in L2 is

{( f ,h) : f ∈ L2,‖ f‖2
L2 = K;h ∈ H1,〈R f ,h〉H1 = 0}

which has fibres that are subspaces of H1. With this in mind, we make a polar decomposition P+ iQ = κeiσ with κ =
√

P2 +Q2

and consider τ = ∂σ

∂x .
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Hasimoto frames and the Gibbs measure of the periodic NLSE 9

Proposition IV.2. For p,q ∈ H1 the functional

L(P,Q) = L(κeiσ ) =−
∫
T

∂ p
∂x

κ cosσdx−
∫
T

∂q
∂x

κ sinσ dx (4.13)

is a Lipschitz functional of P+ iQ = κeiσ such that∫
BK

exp
(

sL(P,Q)−s
∫

BK

L(P,Q)µK,β (dPdQ)
)

µK,β (dPdQ)

≤ exp
{

Cs2
∫
T

((
∂ p
∂x

)2
+
(

∂q
∂x

)2)
dx
}

(s ∈ R). (4.14)

Proof. Note that P+ iQ 7→ κ is 1-Lipschitz with[
σκ,κ∇σ

]
=

1√
P2 +Q2

[
P −Q
Q P

]
∈ SO(2).

Also κ2‖Hessσ‖ is bounded. We have

L(P,Q) =
∫

p
(

∂κ

∂x
cosσ −κτ sinσ

)
dx+

∫
q
(

∂κ

∂x
sinσ +κτ cosσ

)
dx (4.15)

which is bounded on L2 with norm Λ where

Λ
2 ≤

∫
T

((
∂ p
∂x

)2
+
(

∂q
∂x

)2)
dx. (4.16)

By the concentration of measure theorem for νK , we deduce the stated inequality.

Definition We say that (M,d,µ) satisfies T2(α) if

W2(ν ,µ)
2 ≤ 2

α
Ent(ν | µ) (4.17)

for all probability measures ν that are of finite relative entropy with respect to µ . The notation credits Talagrand, who developed
the theory of such transportation inequalities. Otto and Villani showed that LSI(α) implies T2(α); see Refs.41 and42

Theorem IV.3. Let (M,d,µ) be a metric probability space that satisfies T2(α); let
(MN , `2(d),µ⊗N) be the direct product metric probability space. Let Lξ

N = N−1
∑

N
j=1 δξ j be the empirical distribution for ξ =

(ξ j)
N
j=1 ∈MN where ξ j distributed as µ . Then the concentration inequality holds

µ
⊗N
({

ξ :∈MN :
∣∣Wp(L

ξ

N ,µ)−EWp(LN ,µ)
∣∣> ε

})
≤ 2e−Nαε2/2 (ε > 0) (4.18)

for p = 1,2.

Proof. The map between metric spaces

LN : (MN , `2(d))→ (Prob(M),W2) : (x j)
N
j=1 7→

1
N

N

∑
j=1

δx j (4.19)

associated with the empirical distribution is 1/
√

N-Lipschitz. Let (x j)
N
j=1,(y j)

N
j=1 ∈MN and consider the probability measure

on M×M given by

π =
1
N

N

∑
j=1

δ(x j ,y j) (4.20)

which has marginals Lx
N = N−1

∑
N
j=1 δx j and Ly

N = N−1
∑

N
j=1 δy j , hence gives a transport plan with cost

W2(Lx
N ,L

y
N)

2 ≤
∫ ∫

M×M
d(x,y)2

π(dxdy) =
1
N

N

∑
j=1

d(x j,y j)
2. (4.21)
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Hasimoto frames and the Gibbs measure of the periodic NLSE 10

Suppose that (M,d,µ) satisfies T2(α). Then we take N independent samples ξ1, . . . ,ξN , each distributed as µ so they have
joint distribution µ⊗N on (MN , `2(d)), where by independence8 Theorem 1.2, (MN , `2(d),µ⊗N) also satisfies T2(α). By form-
ing the empirical distribution, we obtain a map LN : (MN , `2(d))→ (ProbM,W2). Then ϕ(ξ ) =

√
NWp(L

ξ

N ,µ) is 1-Lipschitz
(MN , `2(d))→ R, since by the triangle inequality and (4.21),

|ϕ(ξ )−ϕ(η)| ≤
√

NWp(L
ξ

N ,L
η

N)≤
√

NW2(L
ξ

N ,L
η

N)≤
N

∑
j=1

d(ξ j,η j)
2; (4.22)

hence ϕ satisfies the concentration inequality∫
MN

exp
(

tϕ(ξ )− t
∫

ϕdµ
⊗N
)

dµ
⊗N ≤ exp(t2/(2α)) (t ∈ R). (4.23)

Then the stated concentration inequality follows from Chebyshev’s inequality.

Theorem IV.3 gives a metric version of Sanov’s theorem on the empirical distribution; see page 70 of18. There are related
results in Bolley’s thesis10. By16, Theorem IV.3 applies to Haar probability measure on SO(3) and normalized area measure
on S2, as is relevant in section 7 below. However, to ensure that EW2(LN ,µ)→ 0 as N → ∞, it is convenient to reduce to
one-dimensional distributions, where we use the following integral formula. For distributions µ and ν on R with cumulative
distribution functions F and G, we write Wp(µ,ν) =Wp(F,G).

Proposition IV.4. Let ξ1 be a real random variable with finite fourth moment, and cumulative distribution function F. Let
ξ1, . . . ,ξN be mutually independent copies of ξ1 giving an empirical measure Lξ

N = N−1
∑

N
j=1 δξ j with cumulative distribution

function Fξ

N (t). Then ∫
RN

W1(F
ξ

N ,F)µ⊗N(dξ )≤ 1√
N

∫
∞

−∞

√
F(t)(1−F(t))dt. (4.24)

Proof. Let H be Heaviside’s unit step function; then Fξ

N (t) = N−1
∑

N
j=1 H(t− ξ j), so

√
N(FN(t)−F(t)) is a sum of mutually

independent and bounded random variables with mean zero. Also, as in the weak law of large numbers, we have

EW1(FN ,F) =
∫

∞

−∞

E|FN(t)−F(t)|dt ≤
∫

∞

−∞

(
E
(
(FN(t)−F(t))2))1/2

dt =
1√
N

∫
∞

−∞

√
F(t)(1−F(t))dt,

where the integral is finite by Chebyshev’s inequality since Eξ 4 is finite. Compare with the result of11, which are effective for
very large N.

Proposition IV.5. Suppose that ξ1 has distribution µ on S2 where µ is absolutely continuous with respect to the normalized
area measure ν1, and dµ = f dν1 where f is bounded with ‖ f‖∞ ≤M. Let ξ j be mutually independent copies of ξ1, and let Lξ

N
be the empirical measure from N samples. Then∫

(S2)N
W1(L

ξ

N ,µ)dµ
⊗N = O(N−1/4) (N→ ∞).

Proof. Let g : S2→R be 1-Lipschitz, and suppose without loss of generality that g has
∫
S2 g(x)ν1(dx)= 0; then g is bounded with

‖g‖∞ ≤ π . Given δ > 0, by considering squares for coordinates in longitude and colatitude, we choose disjoint and connected
subsets E` with diameter diam(E`) ≤ δ and ν1(E`) ≤ δ 2 and µ(E`) ≤Mν1(E) such that ∪`E` = S2. We can arrange that there
are Sδ such sets E`, where Sδ ≤ C/δ 2. Let F be the σ -algebra that is generated by the E`, take conditional expectations in
L2(ν1), and observe that∫

S2
g(x)dLξ

N−
∫
S2

g(x)dµ(x) =
∫
S2

(
g(x)−Eg |F )

)
dLξ

N +
∫
S2

(
E(g |F )−g(x)

)
dµ(x)

+
∫
S2
E(g |F )(x)

(
dLξ

N(x)−dµ(x)
)

(4.25)

where we have bounds ∣∣∣∫
S2

(
g(x)−E(g |F )

)
dLξ

N

∣∣∣≤ sup
`

Lip(g)diam(E`)≤ δ , (4.26)∣∣∣∫
S2

(
g(x)−E(g |F )

)
dµ| ≤ sup

`
Lip(g)diam(E`)≤ δ , (4.27)
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Hasimoto frames and the Gibbs measure of the periodic NLSE 11

and the identity ∫
S2
E(g |F )(x)

(
dLξ

N(x)−dµ(x)
)
= ∑

`

∫
E`

g(x)dν1(x)

ν1(E`)

∫
E`

(dLξ

N−dµ),

so by Cauchy–Schwarz, we have∫
(S2)N

(∫
S2
E(g |F )(x)

(
dLξ

N(x)−dµ(x)
))2

dµ
⊗N

≤∑
`

ν1(E`)‖g‖2
∞ ∑

`

1
ν1(E`)

∫
(S2)N

(Lξ

N(E`)−µ(E`))
2dµ

⊗N (4.28)

where Lξ

N(E`)− µ(E`) = N−1
∑

N
j=1(IE`

(ξ j)− µ(E`)) is a sum of independent random variables with mean zero and variance
N−1µ(E`)(1−µ(E`)), so∫

(S2)N

(∫
S2
E(g |F )(x)

(
dLξ

N(x)−dµ(x)
))2

dµ
⊗N ≤ 1

N
‖g‖2

∞ ∑
`

M ≤ π2CM
δ 2N

. (4.29)

Choosing δ = N−1/4 we make both (4.26) and (4.29) small, which gives the stated result.

Remark Consider the discrete metric δ on [0,1], and observe that IA gives a 1-Lipschitz function on [0,1] for all open A⊆ [0,1].
Then we have

∫
IA(x)(dµ(x)−dν(x)) = µ(A)−ν(A), so by maximizing over A we obtain the total variation norm ‖µ−ν‖var.

With µ a continuous measure and ν a purely discrete measure, such as an empirical measure, we have ‖µ − ν‖var = 1. The
Propositions IV.4 and IV.5 depend upon the choice of cost function as well as the measures.

The Gibbs measure (1.5) was defined using random Fourier series. This construction gives us a sequence of finite-dimensional
probability spaces which approximate the space (BK ,L2,µK,β ). To make this idea precise, we recall some definitions from Ref.40.

Definition IV.6. (Convergence of metric measure spaces)
(i) For M a nonempty set, a pseudometric is a function δ : M→ [0,∞] such that

δ (x,y) = δ (y,x), δ (x,x) = 0, δ (x,z)≤ δ (x,y)+δ (y,z) (x,y,z ∈M); (4.30)

then (M,δ ) is a pseudometric space.
(ii) Given pseudo metric spaces (M1,δ1) and (M,δ2), a coupling is a pseudo metric δ : M→ [0,∞] where M = M1tM2 such

that δ |M1×M1 = δ1 and δ |M2×M2 = δ2.
(iii) Suppose that M̂1 = (M1,δ1,µ1) and M̂2 = (M2,δ2,µ2) are complete separable metric spaces endowed with probability

measures. Consider a coupling (M,δ ) and a probability measure π on M1×M2 with marginals π1 = µ1 and π2 = µ2. Then the
L2 distance between M̂1 and M̂2 is

DL2(M̂1,M̂2) = inf
δ ,π

(∫
M×M

δ (x,y)2
π(dxdy)

)1/2
(4.31)

Let Dn be the Dirichlet projection taking ∑
∞
k=−∞

(ak + ibk)eikθ to ∑
n
k=−n(ak + ibk)eikθ . Following13, we truncate the random

Fourier series of u = P+ iQ = ∑
∞
k=−∞

(ak + ibk)eikθ to un = Pn + iQn = ∑
n
k=−n(ak + ibk)eikθ and correspondingly modify the

Hamiltonian to

H(n)
3 ((ak),(bk)) =

1
2

n

∑
k=−n

k2(a2
k +b2

k)+
β

4

∫ ∣∣∣ n

∑
k=−n

(ak + ibk)eikθ

∣∣∣4 dθ

2π
(4.32)

for the real canonical variables ((ak,bk))
n
k=−n. Then the canonical equations become a coupled system of ordinary differential

differential equations in the Fourier coefficients. We introduce the polar decomposition Pn + iQn = κneiσn , and observe that in
terms of these noncanonical variables, the Hamiltonians H(n)

1 =
∫
T κ2

n dθ and

H(n)
3 =

1
2

∫
T

((
∂κn

∂θ

)2
+κ

2
n

(
∂σn

∂θ

)2)dθ

2π
+

β

4

∫
T

κ
4
n

dθ

2π
(4.33)

are invariants under the flow.
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Hasimoto frames and the Gibbs measure of the periodic NLSE 12

The corresponding Gibbs measure is

dµ
(n)
K,β = Z(K,β ,n)−1IBK (un)exp

(−β

4

∫
T
|un(θ)|4

dθ

2π

)
W (dun) (4.34)

in which W (dun) is the finite dimensional projection of Wiener loop measure and is defined in terms of the Fourier modes as

W (dun) =
n

∏
j=−n; j 6=0

exp
(
− j2

2
(a2

j +b2
j)
) j2da jdb j

2π
. (4.35)

Consider the map u(x, t) 7→ u(x+ h, t) of translation in the space variable. This commutes with Dn, and the Gibbs measures
µ
(n)
K,β are all invariant under this translation. In terms of Fourier components, we have M∞ = BK and

Mn =
{
(a j,b j)

n
j=−n : a j,b j ∈ R :

n

∑
j=−n

(a2
j +b2

j)≤ K
}

(4.36)

with the canonical inclusions of metric spaces (M1, `
2)⊂ (M2, `

2)⊂ ·· · ⊂ (M∞, `
2) defined by adding zeros at the start and end of

the sequences, which gives a sequence of isometric embeddings for the `2 metric on sequences. When we identify (a j,b j)
n
j=−n

with ∑
n
j=−n(a j + ib j)ei jθ , then we have a corresponding embedding for the L2 metric.

Here (Mn,L2,µ
(n)
K,β ) is a finite-dimensional manifold and a metric probability space. We now show that these spaces converge

to (M∞,L2,µK,β ) as n→ ∞.

Lemma IV.7. (i) Suppose that 0 <−βK < 3/(14π2). Then M̂n = (Mn,L2,µ
(n)
K,β ) has

DL2(M̂n,M̂∞)→ 0 (n→ ∞). (4.37)

(ii) The measures µ
(n)
K,β converge in total variation norm to µK,β as n→ ∞.

Proof. (i) This is proved in Theorem 3.2 of Ref.7; see also Example 3.8 of Ref.40. Let W2(µ
(n),µ) be the Wasserstein transporta-

tion distance between free Brownian loop measure µ and the pushforward of µ under the Dirichlet projection, µ(n) = Dn]µ , for
the cost function ‖u− v‖2

L2 .
The key point is

W2(µ
(n),µ)2 ≤

∫
‖Dnu−u‖2

L2 µ(du)

= E ∑
k:|k|>n

|γk|2

k2 = O
(1

n

)
(n→ ∞). (4.38)

(ii) The measures µ
(n)
K,β converge in total variation norm to µK , by an observation of McKean36 in his step 7. By M. Riesz’s

theorem, there exists c4 > 0 such that
∫
T |Dnu|4dθ ≤ c4

∫
T |u|4dθ , and by31 the integral∫

BK

exp
(

λc4

∫
T
|u(θ)|4dθ

)
W (du) (4.39)

is finite, so we can use the integrand as a dominating function to show∫
BK

∣∣∣exp
(

λ

∫
T
|Dnu(θ)|4dθ

)
− exp

(
λ

∫
T
|u(θ)|4dθ

)∣∣∣W (du)→ 0 (n→ ∞). (4.40)

Proposition IV.8. Let (Mn tM∞,δn) be a coupling of (Mn,L2) and M∞,L2), and let ϕ : (Mn tM∞,δn)→ R be a Lipschitz
function. Then ∫

Mn

ϕ(un)µ
(n)
K,β (dun)→

∫
M∞

ϕ(u)µK,β (du) (n→ ∞). (4.41)
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Hasimoto frames and the Gibbs measure of the periodic NLSE 13

Proof. We can introduce a pseudo metric δn on Mn ∪M∞ that restricts to the L2 metric on Mn and M∞, and apply (4.42) to
Lipschitz functions ϕ : (MntM∞,δn)→ R. We can regard Mn×M∞ as a subset of M×M = (MntM∞)× (MntM∞). Note
that for a Lipschitz function ϕ : M→ R such that |ϕ(x)−ϕ(y)| ≤ δ (x,y) for all x,y ∈M, we have∫

Mn

ϕ(un)µ
(n)
K,β (dun)−

∫
M∞

ϕ(u)µK,β (du) =
∫ ∫

Mn×M∞

(ϕ(un)−ϕ(u))π(dudun)

≤
∫ ∫

Mn×M∞

δ (un,u)π(dundu)

≤
(∫ ∫

Mn×M∞

δ (un,u)2
π(dundu)

)1/2

= DL2(M̂n,M̂∞). (4.42)

For example, with u = ∑
∞
n=−∞(ak + ibk)eikθ we introduce Dnu = ∑

n
k=−n(ak + ibk)eikθ ; then ϕ(u) = ‖Dnu‖L2 and ψ(u) =

‖u−Dnu‖L2 give Lipschitz functions ϕ,ψ : (BK ,L2)→ R.

Proposition IV.9. For 0 < γ < 1/16 and fixed 0 < t < t0, the map x 7→ u(x, t) ∈ L4 is γ- Hölder continuous, so that sup{‖u(x+
h, t)−u(x, t)‖L4

x
/|h|γ);h 6= 0} is almost surely finite.

Proof. We prove that for 0 < t < t0, we have C =C(t0) such that∫
BK

∥∥u(x+h, t)−u(x, t)
∥∥16

L4
x
µK,β (du)≤Ch2 (4.43)

so x 7→ u(x, t) ∈ L4
x is γ- Hölder continuous for 0 < γ < 1/16 by the Kolmogorov–Čentsov theorem, as Ref.28. To obtain (4.43),

let J3/8(x) = ∑
′ eikx/|k|3/8 so that J3/8(x)|x|5/8 is bounded on (−π,π) and J3/8 ∈ L4/3(−π,π). Then by Young’s inequality for

convolutions, with |D| : einx 7→ |n|einx we have∥∥u(x+h, t)−u(x, t)
∥∥

L4
x
≤
∥∥J3/8‖L4/3

∥∥|D|3/8u(x+h, t)−|D|3/8u(x, t)
∥∥

L2
x

(4.44)

Then by Bourgain’s estimate on the solutions of NLS from Ref.6, there exists C(t0) such that∥∥u(x+h, t)−u(x, t)
∥∥

H3/8
x
≤C(t0)

∥∥u(x+h, t)−u(x, t)
∥∥

H3/8
x

(4.45)

where ∫
BK

∥∥u(x+h, t)−u(x, t)
∥∥16

H3/8
x

µK,β (du)

≤
(∫

BK

∥∥u(x+h, t)−u(x, t)
∥∥32

H3/8
x

W (du)
)1/2(∫

BK

(dµK,β

dW

)2
W (du)

)1/2
. (4.46)

By basic results about Gaussian series, the first factor on the right-hand side is bounded by the eighth power of

∞

∑
k=1

k3/4(1− coshk)
k2 ≤Ch1/4, (4.47)

so we obtain (4.43). Also, by rotation invariance of the Gibbs measure, we have∫
BK

∣∣u(θ +h, t)−u(θ , t)
∣∣4µK,β (du) =

∫
BK

∥∥u(x+h, t)−u(x, t)
∥∥4

L4
x
µK,β (du),

which is

≤
(∫

BK

∥∥u(x+h,0)−u(x,0)
∥∥8

L4
x
W (du)

)1/2(∫
BK

( dµ

dW

)2
W (du)

)1/2

≤C
( ∞

∑
k=1

1− coshk
k2

)2
≤Ch2,

so x 7→ u(x, t) is 1/4-Hölder continuous along solutions in the support of the Gibbs measure.
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Hasimoto frames and the Gibbs measure of the periodic NLSE 14

V. HASIMOTO TRANSFORM

We recall the Hasimoto25 transform, which associates with a solution u ∈ C2 of (1.3) a space curve in R3 with moving
frame {T,N,B}; Hasimoto considered the case β = −1/2. In the present context, u is associated with the space derivative of
a tangent vector T to a unit speed space curve, so the curvature is κ = ‖ ∂T

∂x ‖. We have a polar decomposition u = κeiσ where
σ(x, t) =

∫ x
0 τ(y, t)dy and τ is the torsion. Then the Serret–Frenet formula is

∂

∂x

T
N
B

=

 0 κ 0
−κ 0 τ

0 −τ 0

T
N
B

 , (5.1)

so the frame develops along the space curve. Let X = [T ;N;B] ∈ SO(3), and Ω1(x, t) the matrix in (5.1). When Ω1(·, t) ∈
C(T;so(3)), the solution X(·, t)∈C([0,2π];SO(3)) to (5.1) is 2π periodic up to a multiplicative monodromy factor U(t)∈ SO(3)
such that X(x+2π, t) = X(x, t)U(t).

The frame also evolves with respect to time, so that with µ =− ∂σ

∂ t −βκ2, we have

∂

∂ t

T
N
B

=

 0 −τκ
∂κ

∂x
τκ 0 −µ

− ∂κ

∂x µ 0

T
N
B

 . (5.2)

Let Ω2 denote the matrix in Equation (5.2). For a pair of coupled ODE dX/dx−Ω1X = 0 and dX/dt−Ω2X = 0, the corre-
sponding Lax pair is

∂Ω1

∂ t
− ∂Ω2

∂x
+
[
Ω1,Ω2

]
= 0.

Lemma V.1. (Hasimoto) If u is a C2 function that satisfies the nonlinear Schrödinger equation, then the coupled pair of differ-
ential equations is consistent in the sense that there exists a local solution of the pair of ODE, and there exists a local solution
of Lax pair.

Thus the frame X ∈ SO(3) evolves along the solution P+ iQ ∈ BK of NLS, and we can regard d/dx−Ω1 and d/dt−Ω2 as
connections for this evolution. Both of the coefficient matrices are real and skew symmetric. One can check that a solution of
the integral equation

X(x, t) = X0(x)+ tΩ2(0,0)X0(0)+
∫ x

0

∫ t

0

(
∂Ω1(y,s)

∂ t
+Ω1(y,s)Ω2(y,s)

)
X(y,s)dsdy (5.3)

satisfies

X(x,0) = X0(x),
∂X(x,0)

∂ t
= Ω2(x,0)X0(x),

∂ 2X(x, t)
∂x∂ t

=
(

∂Ω1(x, t)
∂ t

+Ω1(x, t)Ω2(x, t)
)

X(x, t),

so smooth solutions are given in terms of an integral equation.
From the Serret–Frenet formulas the components of the acceleration along the space curve satisfy∥∥∥T × ∂ 2T

∂x2

∥∥∥2
=
(

∂κ

∂x

)2
+κ

2
τ

2 =
(

∂Q
∂x

)2
+
(

∂P
∂x

)2
,(

T · ∂
2T

∂x2

)2
= κ

4 =
(
P2 +Q2)2

. (5.4)

The total curvature of the space curve is ∫
T

κ(x)2dx =
∫
T
(P2 +Q2)dx = H1(P,Q), (5.5)

which is an invariant under the flow associated with the NLS.
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Hasimoto frames and the Gibbs measure of the periodic NLSE 15

Proposition V.2. Let

H2(P,Q) =−
∫
T

P(x)Q′(x)dx. Then, (5.6)

(i) −H2 is convergent almost surely and is invariant under the flow associated with NLS,
(ii) −H2 represents the area that is enclosed by the contour {u(x) : x ∈ [0,2π]} in the complex plane, and

H2 =
1
2

∫
T

κ
2
τdx; (5.7)

(iii) H2
2 ≤ 4−1H1H3 for β > 0, where H1 is given in Equation (5.5) and H3 is given in Equation (1.1).

Proof. (i) The invariance of H2 was noted in Ref.37 and can be proved by differentiating through the integral sign and using the
canonical equations. We have a series ∫

T
ū(θ , t)

∂u
∂θ

(θ , t)
dθ

2π
= lim

N→∞

N

∑
j=−N

û( j)i jû( j)

which converges almost surely. This follows since∫
BK

sup
N

∣∣∣ N

∑
j=−N

û( j)i jû( j)
∣∣∣pµK,β (du)

≤
(∫

BK

(dµK,β

dW

)2
dW
)1/2(∫

BK

sup
N

∣∣∣ N

∑
j=−N

û( j)i jû( j)
∣∣∣2p

W (du)
)1/2

, (5.8)

where the final integral involves the series

lim
N→∞

N

∑
j=−N

û( j)i jû( j) =
∞

∑
j=1

|z j|2−|z− j|2

j
(5.9)

which is a martingale; by Fatou’s Lemma, we have∫
L2

exp
(

λ

∞

∑
j=1

|z j|2−|z− j|2

j

)
dW =

∞

∏
j=1

∫
L2

exp
(

λ (|z j|2−|z− j|2)
j

)
dW

=
( 2πλ

sin2πλ

)1/2
(−1/2 < λ < 1/2), (5.10)

so the series in (5.9) is marginally exponentially integrable. Hence the integrals in (5.8) converge by the Lp martingale maximal
theorem for all 1 < p < ∞.

(ii) One can write H2 in terms of P+ iQ = κeiσ , and make a change of variables to obtain

κ =
∂ (P,Q)

∂ (κ,σ)

and

H2 =
1
2

∫
T

(
P′Q−PQ′)dx =

1
2

∫
T

κ
2
τdx.

To interpret this as an area, We write θ ∈ [0,2π] for the space variable and extend functions on [0,2π] to harmonic functions
on the unit disc via the Poisson kernel. Then by Green’s theorem, we can express this invariant in terms of the area of the image
of D under the map to P+ iQ, as in

−H2 =
∫ ∫

D

∂ (P,Q)

∂ (x,y)
dxdy. (5.11)

This is similar to Lévy’s stochastic area, as discussed in Example 5.1 of26.
(iii) We then have (∫

T
κ

2
τdx
)2
≤
∫
T

κ
2dx

∫
T

κ
2
τ

2dx

which is bounded in terms of other invariants, with H2
2 ≤ 4−1H1H3.
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Hasimoto frames and the Gibbs measure of the periodic NLSE 16

Remark V.3.

(i) Bourgain13 interprets H2 in terms of momentum (5.70).

(ii) With Mn as in (4.36), the space C∞(Mn;R) is a Poisson algebra for the bracket { f ,g} = ∑
n
j=−n

∂ ( f ,g)
∂ (a j ,b j)

, and the canonical

equations arise with Hamiltonian H(n)
3 on Mn. Let Q be the ring of quaternions, and extend the Poisson bracket to C∞(Mn;Q)

via { f ⊗X ,g⊗Y} = { f ,g}⊗XY . Then (R3,×) may be realised as Q/RI and (so(3), [·, ·]) ∼= (R3,×); see Example 2.3
of Ref.44. This Lie algebra is also the Lie algebra of SU(2), and there is a 2− 1 group homomorphism SU(2)→ SO(3).
Hence some of the following results may be expressed in terms of SU(2), which is the form in which a Lax pair for the
NLSE was presented, see Ref.45 and Ref.43 (Subsection 8.3.2).

(iii) Suppose that T ∈C2([0,a]× [0,b];S2), so that T (x, t) represents the spin of the particle at (x, t) and let

E(T ) =
∫ a

0

∥∥∥∂T
∂x

(x, t)
∥∥∥2

dx, (5.12)

which corresponds to our 5.5. One can consider infinitesimal variations T 7→ T +T ×V and thereby compute ∂E
∂T . In the

focusing case β =−1, Ding20 introduces a symplectic structure on the space of such maps such that the Hamiltonian flow
is

∂T
∂ t

= T × ∂ 2T
∂x2 (5.13)

which corresponds to Heisenberg’s equation for the one-dimensional ferro-magnet, and gives the top entry of (5.2). There
is a a gauge equivalence between the focussing NLS and Heisenberg’s ferro-magnet. There is also a gauge equivalence
between the defocussing NLS and a hyperbolic version of the ferromagnet in which the standard cross product is modified.
We have ∣∣∣∂ 2T

∂x2

∣∣∣2 = (∂κ

∂x

)2
+κ

2
τ

2 +κ
4 =

∣∣∂u
∂x

∣∣2 + |u|4. (5.14)

(iv) As in21, the space

L (SO(3)) = {g : [0,2π]→ SO(3);g continuous, g(0) = g(2π)}

with pointwise multiplication is a loop group, and its Lie algebra may be regarded as

H1
0 (so(3)) =

{
h; [0,2π]→ so(3);h absolutely continuous, h(0) = h(2π) = 0,

∫ 2π

0
‖h′(x)‖2

so(3)dx < ∞

}
.

The aim of the next section is to interpret the Lax pair suitably for solutions which are typically not differentiable and for
which we have a pair of stochastic differential equations with random matrix coefficients.

VI. GIBBS MEASURE TRANSPORTED TO THE FRAMES

The compact Lie group SO(3) of real orthogonal matrices with determinant one is a subset of M3×3(R), which has the scalar
product 〈X ,Y 〉= trace(XY>) and associated metric d(X ,Y ) = 〈X−Y,X−Y 〉1/2 such that 〈XU,YU〉= 〈X ,Y 〉 and d(XU,YU) =
d(X ,Y ) for all U ∈ SO(3) and X ,Y ∈ M3×3(R). The Lie group SO(3) has tangent space at the identity element give by the
skew symmetric matrices so(3), so the tangent space TX SO(3) at X ∈ SO(3) consists of {ΩX : Ω ∈ so(3)}, where so(3) is a Lie
algebra for [x,y] = xy− yx, x,y ∈ so(3), and the exponential map is surjective so(3)→ SO(3).

Consider the differential equation

dX
dt

= Ω(t)X ; X(0) = X0 (6.1)

where t ∈ [0,1] is the evolving time, and X ∈ SO(3). We consider a column vector x ∈ R3, satisfying dx
dt = Ωx which gives

a velocity, and ‖x‖ = 1 because Ω ∈ so(3). Following Otto’s interpretation41 of optimal transport in the setting of partial
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Hasimoto frames and the Gibbs measure of the periodic NLSE 17

differential equations, one constructs a weakly continuous family of probability measures, ν̃t on S2 for t ∈ [0,1], which satisfy
the weak continuity equation,

∂ ν̃t

∂ t
+∇ ·

(
Ωxν̃t

)
= 0. (6.2)

Likewise the differential equation (6.1) gives a weakly continuous family of probability measures, νt on SO(3). If the integral∫ 1

0

∫
SO(3)

‖ΩX‖2
M3×3(R)νt(dX)dt < ∞, (6.3)

and ΩX is locally bounded, then ΩX is locally Lipschitz and νt is the unique solution to the weak continuity equation by Thm
5.34 of Ref.41. Recall that for the operator norm on M3×3(R), ‖A‖= sup{‖Ay‖ : y ∈ R3}, where ‖X‖= 1 for all X ∈ SO(3) so
‖ΩX‖ ≤ ‖Ω‖.

The weak continuity equation is equivalent to∫
SO(3)

f (X)νt(dX) =
∫

SO(3)
f (Xt(X0))ν0(dX0) (6.4)

for all f ∈C(SO(3);R), where X0 7→ Xt(X0) gives the dependence of the solution of (6.1) on the initial condition. The velocity
field ΩX is associated with a transportation plan taking νt1 to νt2 which is possibly not optimal, but does give an upper bound on
the Wasserstein distance for the cost d(X ,Y )2 on SO(3) of

W2(νt2 ,νt1)
2

tt − t1
≤
∫ t2

t1

∫
SO(3)

‖Ω‖2
M3×3(R)νt(dX)dt (0 < t1 < t2 < 1). (6.5)

Then by Theorem 23.9 of Ref.42, the path (νt) of probability measures is absolutely continuous, so there exists ` ∈ L1[0,1] such
that W2(νt2 ,νt1)≤

∫ t2
t1 `(t)dt and 1/2-Hölder continuous, so there exists C > 0 such that W2(νt2 ,νt1)≤C|t2− t1|1/2.

Example VI.1. (i) If Ωt ∈M3×3(R) is skew, and Xt ,Yt give solutions of the differential equation

dX
dt

= ΩtX ,X(0) = X0;
dY
dt

= ΩtY,Y (0) = Y0 (6.6)

then d(Xt ,Yt) = d(X0,Y0). We deduce that if X0 is distributed according to Haar measure on SO(3), then Xt is also distributed
according to Haar measure since the measure, the metric and solutions are all preserved via X 7→ XU .

(ii) As an alternative, we can consider X0 to have first column [0;0;1] and observe the evolution of the first column T of X
under the (6.1) where T evolves on S2.

We now consider the case in which Ω as in (5.2) is a so(3)-valued random variable over (M∞,µK,β ,L2).

Proposition VI.2. Suppose that Ω = Ω(u(·, t)) where u(x, t) is a solution of NLS and that∫
BK

‖Ω(u(·,0))‖2
M3×3(R)µK,β (du) (6.7)

converges. Then for almost all u with respect to µK,β , there exists a flow (νt(dX ;u)) of probability measures on SO(3).

Proof. Each solution u of NLS determines Ω so that the associated ODE (6.1) transports the initial distribution of X0 ∈ SO(3) to
a probability measure on SO(3); then we average over the u with respect to µK(du). This Gibbs measure is invariant under the
NLS flow, so by Fubini’s theorem ∫

BK

∫ 1

0

∫
SO(3)

‖Ω(u(·, t))‖2
M3×3(R)νt(dX)dtµK(du) (6.8)

converges. Hence the condition (6.3) is satisfied, for almost all u, and we can invoke Theorem 23.9 of Ref.42.

For the finite-dimensional Mn of (4.36) and solutions un = κneiσn , the modified Hasimoto differential equations are

∂

∂x
X (n)(x, t) =

 0 κn 0
−κn 0 τn

0 −τn 0

X (n)(x, t), (6.9)

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
69

79
2



Hasimoto frames and the Gibbs measure of the periodic NLSE 18

and

∂

∂ t
X (n)(x, t) =

 0 −τnκn
∂κn
∂x

τnκn 0 ∂σn
∂ t +βκ2

n

− ∂κn
∂x −

∂σn
∂ t −βκ2

n 0

X (n)(x, t) (6.10)

involves τn =
∂σn
∂x and ( ∂κn

∂x )
2 + τ2

n κ2
n = ( ∂Pn

∂x )
2 +( ∂Qn

∂x )2 which is continuous, so there exists a solution X (n)(x, t) ∈ SO(3). We

can interpret the solutions as elements of a fibre bundle over (Mn,µ
(n)
K ,L2) with fibres that are isomorphic to SO(3).

Let P+ iQ = κeiσ be a solution of NLS and let

Ω1 =

 0 κ 0
−κ 0 τ

0 −τ 0

 . (6.11)

Proposition VI.3. (i) Let P+ iQ = κeiσ be a solution of NLS with initial data in P(x,0)+ iQ(x,0)∈ BK ∩H1. Then Ω1 in (6.11)
gives an so(3)-valued vector field in L2(κ2(x, t)dx).

(ii) Let P+ iQ = κeiσ be a solution of NLS with initial data P(x,0)+ iQ(x,0) ∈ H1 ∩BK , and let Pn + iQn = κneiσn be the
corresponding solution of the NLS truncated in Fourier space, giving matrix Ω

(n)
1 . Let X (n)

t (x) be a solution of (6.9) and suppose
that X (n) converges weakly in L2 to Xt(x). Then Xt gives a weak solution of (5.1).

Proof. (i) With ω =
√

κ2 + τ2, we have

exp(hΩ1) = I +
sinhω

ω
Ω1 +

1− coshω

ω2 Ω
2
1

where the entries of Ω2
1 are bounded by κ2 + τ2, hence∫

T
‖Ω1(x, t)‖2

M3×3(R)κ(x, t)
2dx < ∞ (6.12)

for u ∈ H1; however, there is no reason to suppose that τ itself is integrable with respect to dx.
(ii) By (5.4) and (5.5), we have κΩ1 ∈ L2

x for all u ∈ H1. Moreover, Bourgain12 has shown that for initial data P(x,0)+
iQ(x,0) = κ(x,0)eiσ(x,0) in H1∩BK , the map

κ(x,0)eiσ(x,0) 7→ κ(x, t)Ω1(x, t) ∈ L2 (6.13)

is Lipschitz continuous for 0≤ t ≤ t0 with Lipschitz constant depending upon t0,K > 0. We have

‖κ(x+h, t)X(x+h, t)−κ(x, t)X(x, t)‖2

h2 ≤ 2
(1

h

∫ x+h

x

∣∣∂κ

∂y
(y, t)

∣∣dy
)2

+2
(1

h

∫ x+h

x
κ(y, t)‖Ω1(y, t)‖dy

)2
(6.14)

where the right-hand side is integrable with respect to x by the Hardy–Littlewood maximal inequality and (6.12). Suppose that
X (n) is a solution of (5.1). We take τn to be locally bounded. Then by applying Cauchy–Schwarz inequality to the integral

X (n)(x+h, t)−X (n)(x, t) =
∫ h

0
Ω

(n)
1 (x+ s, t)X (n)(x+ s, t)ds,

we deduce that ∫
[0,2π]
‖X (n)(x+ s, t)−X (n)(x, t)‖2

M3×3(R)κn(x, t)2dx

≤ h
∫ h

0

∫
[0,2π]
‖Ω(n)

1 (x+ s, t)‖2
M3×3(R)κn(x, t)2dxds (6.15)

where the integral is finite by (6.12). Also

N

∑
j=1

‖X (n)(x j, t)−X (n)(x j−1, t)‖2
M3×3(R)

x j− x j−1
≤
∫ xN

x0

‖Ω(n)
1 (x, t)‖2dx
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Hasimoto frames and the Gibbs measure of the periodic NLSE 19

for 0 < x1 < x2 < · · ·< xN < 2π . We have

∂

∂x

(
κnX (n))= ∂κn

∂x
X (n)+κ

(n)
Ω

(n)
1 X (n) (6.16)

so for Z ∈C∞([0,2π];M3×3(R)) and the inner product on M3×3(R), we have

〈κn(2π)X (n)(2π),Z(2π)〉−〈κn(0)X (n)(0),Z(0)〉−
∫ 2π

0
κn(x)〈X (n)(x),Z(x)〉dx

=
∫ 2π

0

∂κn

∂x
〈X (n)(x),Z(x)〉dx+

∫ 2π

0
〈X (n),κn(x)Ω

(n)
1 (x)>Z(x)〉dx (6.17)

where κn → κ in H1, so with norm convergence, we have ∂κn
∂x →

∂κ

∂x in L2, and κnΩ(n) → κΩ1 as n→ ∞, and with weak
convergence in L2, we have X (n)→ X , so

〈κ(2π)X(2π),Z(2π)〉−〈κ(0)X(0),Z(0)〉−
∫ 2π

0
κ(x)〈X(x),Z(x)〉dx

=
∫ 2π

0

∂κ

∂x
〈X(x),Z(x)〉dx+

∫ 2π

0
〈X ,κ(x)Ω1(x)>Z(x)〉dx. (6.18)

The simulation of this differential equation computes Xx ∈ S2 starting with X0 = [0;0;1] and produces a frame {Xx,ΩxXx,Xx×
ΩxXx} of orthogonal vectors. Geodesics on S2 are the curves such that the principal normal is parallel to the position vector,
namely the great circles. For a geodesic, Xx×ΩxXx is perpendicular to the plane that contains the great circle.

Let P+ iQ = κeiσ be a solution of NLS and let

Ω2 =

 0 −κτ
∂κ

∂x
κτ 0 0
− ∂κ

∂x 0 0

 . (6.19)

Proposition VI.4. (i) Let P+ iQ = κeiσ be a solution of NLS with initial data P(x,0)+ iQ(x,0) ∈ BK . Then x 7→
∫ x

0 Ω2(y, t)dy
gives a so(3)-valued stochastic of finite quadratic variation on [0,2π] almost surely with respect to µK(dPdQ).

(ii) Let P+ iQ = κeiσ be a solution of NLS with initial data P(x,0)+ iQ(x,0) ∈ H1 ∩BK , and let Pn + iQn = κneiσn be the
corresponding solution of the NLS truncated in Fourier space, giving matrix Ω

(n)
2 . Let X (n)

t be a solution of (6.10). Then X (n)
t

converges in L2
x norm to Xt as n→ ∞ where Xt gives a weak solution of (5.2).

Proof. (i) The essential estimate is∫
BK

∑
j
|κ(x j+1, t)−κ(x j, t)|2µK(du)

≤∑
j

(∫
BK

|u(x j+1, t)−u(x j, t)|2µK(du)
)

≤∑
j

(∫
BK

|u(x j+1, t)−u(x j, t)|4WK(du)
)1/2(∫

BK

(dµK

dW

)2
dW
)1/2

≤C∑
j

(∫
BK

|u(x j+1, t)−u(x j, t)|2W (du)
)1/2

≤C∑
j
(x j+1− x j)≤ 2πC. (6.20)

The function σ is a progressively measurable stochastic process adapted with respect to a suitable filtration, and with differ-
ential satisfying an Ito integral equation22. Therefore, we can control the κτ term via∫ x

0
(κdσ −2−1

κ
2〈dσ ,dσ〉) =

∫ x

0
κ∇σ ·

[
dP
dQ

]
=
∫ x

0

−QdP+PdQ√
P2 +Q2

(6.21)

which is a bounded martingale transform of Wiener loop. This formula is reminiscent of Levy’s stochastic area as in Example
5.1 of Ref.26.
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Hasimoto frames and the Gibbs measure of the periodic NLSE 20

(ii) By (5.4) and (5.5), we have Ω2 ∈ L2
x for all u ∈ H1. Bourgain12 has shown that for initial data P(x,0) + iQ(x,0) =

κ(x,0)eiσ(x,0) in H1∩BK , the map

κ(x,0)eiσ(x,0) 7→Ω2(x, t) ∈ L2
x (6.22)

is Lipschitz continuous for 0≤ t ≤ t0 with Lipschitz constant depending upon t0,K > 0. We have∫ 2π

0
‖Ω2(x)‖2dx≤ 2

∫ 2π

0

((
∂κ

∂x

)2
+κ(x)2

τ(x)2 +κ(x)4
)

dx,

where the final integral is part of the Hamiltonian. With Z ∈C∞(T;M3×3(R)), we have the integral equation for the pairing 〈·, ·〉
on L2([0,2π],M3×3(R))

〈X (n)
t ,Z〉= 〈X (n)

0 ,Z〉+
∫ t

0
〈X (n)

s ,(Ω
(n)
s )>Z〉ds. (6.23)

Consider the variational differential equation in L2([0,2π],M3×3(R))

d
dt
(X (m)(x, t)−X (n)(x, t)) = Ω

(n)
2 (x, t)(X (m)(x, t)−X (n)(x, t))

+(Ω
(m)
2 (x, t)−Ω

(n)
2 (x, t))X (m)(x, t) (6.24)

where Ω
(n)
2 (x, t) and Ω

(m)
2 (x, t)−Ω

(n)
2 (x, t) are skew.

We introduce a family of matrices U (n)(x; t,s) such that U (n)(x; t,r)U (n)(x;r,s) =U (n)(x; t,s) for t > r > s and U (n)(x; t, t) = I
such that

∂

∂ t
U (n)(x; t,s) = Ω

(n)
2 (x; t)U (n)(x; t,s). (6.25)

Then the variational equation has solution

X (m)(x, t)−X (n)(x, t) =U (n)(x; t,0)(X (m)(x,0)−X (n)(x,0))

+
∫ t

0
U (n)(x; t,r)(Ω(m)

2 (x;r)−Ω
(n)
2 (x;r))X (m)(x,r)dr.

Then

d
dt

〈
X (m)(t)−X (n)(t),X (m)(t)−X (n)(t)〉L2

x

= 2Re
〈
(Ω

(m)
2 (t)−Ω

(n)
2 (t))X (m)(t),X (m)(t)−X (n)(t)

〉
L2

x

≤ ‖Ω(m)
2 (t)−Ω

(n)
2 (t)‖2

L2
x
‖X (m)(t)‖2

L2
x
+‖X (m)(t)−X (n)(t)‖2

L2
x

(6.26)

so from this differential inequality we have

‖X (m)(t)−X (n)(t)‖2
L2

x
≤ et‖X (m)(0)−X (n)(0)‖2

L2
x
+
∫ t

0
et−s‖Ω(m)

2 (s)−Ω
(n)
2 (s)‖2

L2
x
ds. (6.27)

Now X (m)(0)−X (n)(0)→ 0 and Ω
(m)
2 (s)−Ω

(n)
2 (s)→ 0 in L2

x norm as n,m→ ∞, so there exists X(x, t) ∈ L2
x such that X(x, t)−

X (n)(x, t)→ 0 in L2
x norm as n→ ∞.

We deduce that

〈X(t),Z〉L2
x
= 〈X0,Z〉L2

x
+
∫ t

0
〈Xu,(Ω2(u))>Z〉L2

x
du, (6.28)

so we have a weak solution of the ODE.

Let Ω
(n,un)
2 (x, t) be the Fourier truncated matrix that corresponds to a solution un of the Fourier truncated equation NLSn, then

let Xn,un(x, t) be the solution of the ODE (6.10). By Proposition VI.2, the map un 7→ Xn,un(·, t) pushes forward the modified
Gibbs measure µ

(n)
K to a measure on (C(Mn;SO(3)),L2) that satisfies a Gaussian concentration of measure inequality with

constant α(β ,K)/n2; compare (3.9).
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Hasimoto frames and the Gibbs measure of the periodic NLSE 21

Corollary VI.5. For each Z ∈ L2([0,2π];M3×3(R)), introduce the R-valued random variable on (Mn,L2,µ
(n)
K ) by

Zn(un) =
∫
[0,2π]
〈X (n,un)(x, t),Z(x)〉dx. (6.29)

(i) Then the distribution ν(n) of Zn satisfies the Gaussian concentration inequality∫
Mn

exp
(

tZn− t
∫

Mn

Zndµ
(n)
K

)
µ
(n)
K (dun)≤ exp

(
n2t2/α(β ,K)

)
(t ∈ R). (6.30)

(ii) Let ν
(n)
N = N−1

∑
N
j=1 δ

Z( j)
n

be the empirical distribution of N independent copies of Zn. Then W1(ν
(n)
N ,ν(n))→ 0 almost surely

as N→ ∞.

Proof. (i) As with un, we introduce the corresponding data for another solution vn. As in (6.27), we have

‖X (n,un)(x, t)−X (n,vn)(x, t)‖2
R3 ≤ et‖X (n,un)(0)−X (n,vn)(0)‖2

R3

+
∫ t

0
et−s‖Ω(n,un)

2 (x,s)−Ω
(n,vn)
2 (x,s)‖2

so(3)ds. (6.31)

For given initial condition Xn,vn)(0) = X (n,un)(0), and T > 0, we can take the supremum over t, then integrate this with respect
to x and obtain ∫ 2π

0
sup

0<t<T
‖X (n,un)(x, t)−X (n,vn)(x, t)‖2

R3dx

≤ eT
∫ T

0
‖Ω(n,un)

2 (x,s)−Ω
(n,vn)
2 (x,s)‖2

L2
x
ds (6.32)

so Ω(u) 7→ Xu is a Lipschitz function L2([0,2π]× [0,T ],so(3))→ L2([0,2π];L∞([0,T ],R3)). By Bourgain’s results, there exists
C > 0 such that

‖Ω(n,un)
2 (x,s)−Ω

(n,vn)
2 (x,s)‖L2

x
≤C‖un(x,s)− vn(x,s)‖H1

x

≤Cn‖un(x,0)− vn(x,0)‖L2
x
, (6.33)

so un 7→ X (n,un) is a Lipschitz function on L2
x , albeit with a constant growing with n. Thus we can push forward the modified

Gibbs measure (Mn,L2,µ
(n)
K,β )→ L2([0,2π];M3×3(R)) so that the image measure satisfies a Gaussian concentration inequality

with constant α(β ,K)/n2 dependent upon n. For each Z ∈ L2([0,2π];M3×3(R)), we introduce Zn, so that where un 7→ Zn is Cn-
Lipschitz function from (Mn,L2,µ

(n)
K,β ) to R. The random variable Zn therefore satisfies the Gaussian concentration inequality

(6.30).
(ii) By Theorem IV.3, we can use the Borel–Cantelli Lemma to show that

P
[∣∣W1(ν

(n)
N ,ν(n))−EW1(ν

(n)
N ,ν(n))

∣∣> ε for infinitely many N
]
= 0 (ε > 0),

where by Proposition IV.4, EW1(ν
(n)
N ,ν(n))→ 0 as N→ ∞.

Consider a coupling of (Mn,L2,µ
(n)
K,β ) and (M∞,L2,µK,β ) involving measure πn. For any bounded continuous ϕ : C→ R we

can consider

∫
Mn

ϕ(Zn(un))µ
(n)
K,β (dun)−

∫
M∞

ϕ(Z(u))µK,β (du)

=
∫ ∫

Mn×M∞

(
ϕ(Zn(un))−ϕ(Z(u))

)
πn(dundu) (6.34)

where

DL2(M̂n,M̂∞)
2 =

∫ ∫
Mn×M∞

δ (un,u)2
πn(dundu)→ 0 (n→ ∞).
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Hasimoto frames and the Gibbs measure of the periodic NLSE 22

Proposition VI.6. Let (ϕ j)
∞
j=1 be a dense sequence in Ball(Cc(C;R)) and (Y`)∞

`=1 a dense sequence in Ball(L2). Then there
exists a subsequence (nk) such that ∫

Mnk

ϕ j
(
〈X (nk,unk ),Y`〉

)
µ
(nk)
K,β (dunk) (6.35)

converges as nk→ ∞ for all j, ` ∈ N.

Proof. We can introduce a metric so that M = ∏
∞
n=1 Mn tM∞ becomes a complete and separable metric space, and we can

transport µn onto M. Then ω = 2−1µ∞ +∑
∞
n=1 2−n−1µn is a probability measure on M, and µn is absolutely continuous with

respect to ω , so dµn = fndω for some probability density function fn ∈ L1(ω). By convergence in total variation from Lemma
IV.7 (ii), here exists f∞ ∈ L1(ω) such that fn→ f∞ in L1 as n→ ∞. Given a bounded sequence (gn)

∞
n=1 in L∞(ω), there exists

g∞ ∈ L∞(ω) and a subsequence (nk) such that∫
gnk dµnk =

∫
gnk fnk dω →

∫
g∞ f∞dω =

∫
g∞dµ∞. (6.36)

Remark VI.7. For u ∈M∞, we have un = Dnu ∈Mn so that un→ u in L2 norm as n→ ∞. It is plausible that (6.34) tends to 0
as n→ ∞, but we do not have a proof. Unfortunately, the constants are not sharp enough to allow us to use Proposition IV.8 to
deduce W2 convergence for the distributions on SO(3).

VII. EXPERIMENTAL RESULTS

Our objective in this section is to obtain a (random) numerical approximation to the solution of (6.9). We consider the case
where the parameter β in (1.3) is equal to 0. Note that in this case, the Gibbs measure reduces to Wiener loop measure and
stochastic processes with the Wiener loop measure as their law are by definition Brownian loop. Equation (6.9) is a PDE with
respect to the space variable x, while the parameter of a stochastic process in an SDE is colloquially referred to as time. To avoid
confusion, in this section we refer to x as s; whereas the time variable t is suppressed.

Recall the polar decomposition P + iQ = κeiσ where, κ =
√

P2 +Q2 and σ is such that τ = ∂σ

∂ s . Define σε(P,Q) :=
tan−1( PQ

P2+ε2 ) as the regularised Itô integral of τ . The Itô differential can be written as

dσε = f1(P,Q)dP+ f2(P,Q)dQ+ f3(P,Q)ds,

where

f1(P,Q) :=
(ε2−P2)Q

(ε2 +P2)2 +P2Q2 ,

f2(P,Q) :=
P(ε2 +P2)

(ε2 +P2)2 +P2Q2 ,

f3(P,Q) :=− 2P3Q(ε2 +P2)

((ε2 +P2)2 +P2Q2)2 −
2PQ

(
(ε2 +P2)2 +P2Q2

)
((ε2 +P2)2 +P2Q2)2 −

(ε2−P2)Q
(
2PQ2 +4P(ε2 +P2)

)
((ε2 +P2)2 +P2Q2)2 .

We can write (6.9) in the form of a SDE, including a correction to convert from a Stranovich SDE into an Itô SDE as follows

dXs =AXsds+BXsdP+CXsdQ (7.1)

where,

A =

 0
√

P2 +Q2 0
−
√

P2 +Q2 1
2 f 2

1 (P,Q)+ 1
2 f 2

2 (P,Q) f3(P,Q)
0 − f3(P,Q) 1

2 f 2
1 (P,Q)+ 1

2 f 2
2 (P,Q)

 ,
B =

0 0 0
0 0 f1(P,Q)
0 − f1(P,Q) 0

 , C =

0 0 0
0 0 f2(P,Q)
0 − f2(P,Q) 0

 . (7.2)
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FIG. 1. The figure demonstrates a sample path of the stochastic process Xs, which is a solution to Equation (7.3). As Xs ∈ SO(3) the path is
visualised as the action of Xs applied to a unit vector in R3. The numerical solution shown is for s ∈ [0,10], and has a step size of h = 10−5.

As justified above P and Q are each a Brownian bridge with period T = 2π , thus they can be expressed in terms of Brownian
motions W1 and W2; that is, P(s) =W1(s)−sW1(2π)/2π and likewise for Q. Equation (7.1) is now written as a standard Itô SDE,

dXs =
(

A+
W1(2π)

2π
B+

W2(2π)

2π
C
)

Xsds+BXsdW1 +CXsdW2 (7.3)

where A, B and C are defined as in Equation (7.2). The resulting stochastic process Xs ∈ SO(3) is then used to rotate the
unit vector y0 = [0,0,1]> on S2 to ys = Xsy0, the third column of Xs. The sample paths of this process can be described by
construction of a frame {ys,y′s,ys× y′s}. In order to simulate this SDE, we make use of a numerical scheme for matrix SDEs in
SO(3) developed by Marjanovic and Solo34. This involves a single step geometric Euler-Maruyama method, called g-EM, in
the associated Lie algebra. Figure 1 demonstrates a sample-path of ys generated via this method, and the code used to simulate
a sample path is available30. The sample paths start off on the great circle perpendicular to the y-axis, and so have constant
binormal ys×y′s. As a sample path extends past the great circle, the binormal vector at each point deviates slowly; thus a sample
path can be thought of as a precessing orbit.

The Itô process ys is derived from the solution to Equation (7.3) and takes values in R3. Let ŷs,h denote the numerical
approximation to ys on [0,T ] with step size h, which is calculated using the g-EM method. The approximation error converges
to zero in the L2 space of Itô processes as the step size h→ 0,

E
[

sup
0≤s<T

‖ys− ŷs,h‖2
R3

]
= O(h1−ε), (7.4)

for some ε > 0 (See Piggott39). A value of ε = 1/4 allows us to maintain control of the implied constants on the interval [0,1],
and h is taken to be 10−5. We apply g-EM to Equation (7.3) on the interval [0,10], upon which a smaller value of h would be
welcomed. However, we are attempting to calculate a distribution, so we need a large number of sample-paths.

The computational complexity of simulating a single sample-path is O(T/h) where T denotes the length of the interval
simulated. Therefore, for a total of N samples, the computational complexity of our simulation algorithm is O(NT/h). We run
our simulations using a machine equipped with an 8-core Intel Xeon Gold 6248R CPU with a clock speed of 2993 Mhz; we take
advantage of integrated parallelisation in MATLAB. With h = 10−5 and N = 2×106 the algorithm takes around 1 week to run
on our system.

Since the sample paths are constrained to S2 the points ys can be specified in spherical coordinates of longitude θs ∈ [−π,π)
and colatitude φs ∈ [0,π]. Figure 2 demonstrates the empirical joint distribution of θs and φs for two different values of s. As
can be observed, the distribution of (θs,φs) varies with s. We hypothesise that the angles θs and φs evolve to become statistically
independent, and that ys will eventually be uniformly distributed on the sphere. In the remainder of the section, we test this
hypothesis statistically.
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FIG. 2. Histograms of the joint distribution of the third column of Xs at two timesteps, s = 1 (left) and s = 10 (right). The distribution lies on
the sphere S2 and thus the axes are chosen as the longitude θs and colatitude φs. With respect to these axes the marginals of the distribution
become more independent over time.

a. Wasserstein distance between measures on S2. We start by calculating the Wasserstein distance W1(ν1,ν2) between
probability measures ν1 and ν2 on S2, which are absolutely continuous with respect to area and have disintegrations

dν j = f j(θ)g j(φ | θ)sinφ dφdθ (θ ∈ [−π,π],φ ∈ [0,π], j = 1,2)

where f j ( j = 1,2) are probability density functions on [−π,π] that give the marginal distributions of ν j in the longitude θ

variable, and g j in the colatitude variable. Let Fj be the cumulative distribution function of f j(θ)dθ and G j be the cumulative
distribution function of g j(φ)sinφ dφ . We measure W1(ν1,ν2) in terms of one-dimensional distributions. Given distributions on
R with cumulative distribution functions F1 and F2, we write W1(F1,F2) for the Wasserstein distance between the distributions
for cost function |x− y|. Let ψ : [−π,π]→ [−π,π] be an increasing function that induces f2(θ)dθ from f1(θ)dθ ; then

W1(ν1,ν2)≤W1
(
F1,F2)+

∫
π

−π

W1
(
G2(· | ψ(θ)),G1(· | θ)

)
f1(θ)dθ .

In particular, for f1(θ)= 1/(2π) and g1(φ)= 1/2, we have a product measure ν1(dθdφ)= (4π)−1 sinφdφdθ giving normalized
surface area on the sphere. Then F1(θ) = (θ +π)/(2π) and F2(ψ(θ)) = (θ +π)/(2π), so ψ(2π(τ−1/2)) for τ ∈ [0,1] gives
the inverse function of F2. We deduce that

W1(F1,F2) =
∫

π

−π

∣∣∣θ +π

2π
−F2(θ)

∣∣∣dθ (7.5)

and

W1
(
G2(· | ψ(θ)),G1(· | θ)

)
=
∫

π

0

∣∣∣∫ φ

0

(
g2(φ

′ | ψ(θ))− (1/2)
)

sinφ
′dφ
′
∣∣∣dφ (7.6)

Hence the Wasserstein distance can be bounded in terms of the cumulative distribution functions by

W1(ν1,ν2)≤W1(F2,F1)+W1(G2,G1)+
∫

π

−π

W1(G2(· | θ),G2)dF1(θ)

=
∫

π

−π

∣∣∣θ +π

2π
−F2(θ)

∣∣∣dθ +
∫

π

0

∣∣∣G2(φ)−
1− cosφ

2

∣∣∣dφ +
∫

π

−π

∫
π

0

∣∣G2(φ | θ)−G2(φ)
∣∣dF1(θ)dφ (7.7)

where we have used the triangle inequality to obtain a more symmetrical expression involving the Wasserstein distances for the
marginal distributions and the G conditional distributions, namely the dependence of the colatitude distribution on longitude.

For each s ∈ [0,10], let Fθs and Gφs be the marginal CDFs of θs and φs respectively. For N ∈ N, denote by Fθs
N and Gφs

N the
empirical CDFs of θs and φs. We generate empirical CDFs Fθs

N and Gφs
N with s = 0.3,0.6,0.9, . . . ,6.0, and N = 105. Figure 3

demonstrates that W1(F1,F
θs
N ) and W1(G1,G

φs
N ), each decreases with increasing s. As a consequence of Theorem IV.3 and

Proposition IV.4 for N = 105 with probability at least 0.99 it holds that W1(F
θs
N ,Fθs)≤ 0.025 and W1(G

φs
N ,Gφs)≤ 0.018. Thus,

we observe that Fθs converges to F1 and Gφs converges to G1.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
69

79
2



Hasimoto frames and the Gibbs measure of the periodic NLSE 25

FIG. 3. The plots involve the difference between the CDFs of two marginals. For θs, the predicted CDF F1(θ) = (θ +π)/(2π) is compared
with the empirical CDF, Fθs

N . The Wasserstein distance between F1(θ) and Fθs
N is displayed on the left. For φs, the predicted CDF G1(φ) = (1−

cos(φ))/2 is compared with the empirical CDF Gφs
N . The Wasserstein distance between G1(φ) and Gφs

N is displayed on the right. The emprical
measures considered are created using N = 105 samples and evaluated at each of the datapoints indicated on the graphs (s = 0.3,0.6, ...,6.0).

b. Hypothesis tests for independence and goodness-of-fit. We run a total of 22 hypothesis tests to examine the evolution
of the joint distribution of the angles θs and φs. In order to account for multiple testing, we set the significance level of each test
to 0.00045, leading to an overall level of 0.01. First, we generate sample paths to obtain N = 105 realisations of (θs,φs) for each
value of s= 0.3,0.6,0.9, . . . ,6.0. For each s, we test the null hypothesis H0,s that the angles θs and φs are statistically independent,
against the alternative hypothesis H1,s that they are dependent. To this end, we rely on a widely used nonparametric independence
test, which is based on the Hilbert-Schmidt Independence Criterion (HSIC) dependence measure2,24; the implementation is due
to Jitkrittum27. It is observed that while the null hypothesis is rejected for s = 0.3, . . . ,2.1, the test is unable to reject H0,s from
s = 2.4, . . . ,6.0 at (an overall) significance level 0.01.

We run two Kolmogorov-Smirnov goodness-of-fit tests for s = 10 as follows. The first tests the null hypothesis Hθs
0 that θs

is distributed according to F1 against the alternative that it is not; the second tests the null hypothesis Hφs
0 that φs is distributed

according to G1 against the alternative that it is not. At significance level 0.01, the tests are unable to reject the null hypotheses
Hθs

0 and Hφs
0 .
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