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Inferring the mixing properties of a stationary
ergodic process from a single sample-path

Azadeh Khaleghi∗, Gábor Lugosi†

Abstract—We propose strongly consistent estimators of the
ℓ1 norm of the sequence of α-mixing (respectively β-mixing)
coefficients of a stationary ergodic process. We further provide
strongly consistent estimators of individual α-mixing (respectively
β-mixing) coefficients for a subclass of stationary α-mixing
(respectively β-mixing) processes with summable sequences of
mixing coefficients. The estimators are in turn used to develop
strongly consistent goodness-of-fit hypothesis tests. In particular,
we develop hypothesis tests to determine whether, under the
same summability assumption, the α-mixing (respectively β-
mixing) coefficients of a process are upper bounded by a given
rate function. Moreover, given a sample generated by a (not
necessarily mixing) stationary ergodic process, we provide a
consistent test to discern the null hypothesis that the ℓ1 norm of
the sequence α of α-mixing coefficients of the process is bounded
by a given threshold γ ∈ [0,∞) from the alternative hypothesis
that ∥α∥ > γ. An analogous goodness-of-fit test is proposed
for the ℓ1 norm of the sequence of β-mixing coefficients of a
stationary ergodic process. Moreover, the procedure gives rise to
an asymptotically consistent test for independence.

Index Terms—stationary ergodic process, mixing coefficients,
long-range dependence, consistency, estimation, hypothesis test-
ing

I. INTRODUCTION

M Ixing is a fundamental notion in the theory of stochas-
tic processes. Roughly speaking, a stochastic process

X = ⟨Xt⟩t∈N indexed by “time” is mixing if events separated
by long time intervals are approximately independent. There
are various notions to quantify such asymptotic independence,
including α-mixing, β-mixing, ϕ-mixing, ρ-mixing, ψ-mixing;
see Bradley [1] for a general survey. These notions of mixing
are particularly useful in time-series analysis where non-
asymptotic concentration inequalities are available for em-
pirical averages of stationary processes, see, for example,
Ibragimov [2], Doukhan [3], Rio [4], Bertail, Doukhan, and
Soulier [5], Bradley [1], Bosq [6]. In order to be able to
take advantage of these tools, in statistical studies one often
assumes that the process is not only mixing but that the mixing
coefficients are such that the desired concentration inequalities
hold. Despite the widespread use of such assumptions, little
attention has been paid to validating these conditions. For
instance, in the context of sequential decision making in
the presence of long-range dependencies, Grünewälder and
Khaleghi [7] propose algorithms with finite-time guarantees
which require known upper-bounds on the ℓ1 norm of the
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φ-mixing coefficients of the pay-off distributions. They also
show (see, [7, Proposition 9]) that individual mixing coeffi-
cients naturally appear in theoretical bounds on the quality
of approximation of the optimal strategies by simpler and
more computationally tractable approaches. Indeed, consistent
estimators of mixing coefficients can serve as indispensable
tools in modern statistics.

In this paper, we study the problem of estimating α and β-
mixing coefficients. More precisely, we address the following
problem:

Given a finite sample-path of a real-valued, stationary
ergodic process, how can one consistently estimate the
α-mixing and β-mixing coefficients of the process?

Since the ℓ1 norm of the sequence of these coefficients plays
an important role in quantifying how much sample averages
differ from their expectations (see, e.g. [4, Corollary 1.1]),
we pay special attention to estimating the ℓ1 norm. Our
main results show that consistent estimation of these norms is
indeed possible, under the only assumption that the process is
stationary ergodic. (If the process is not mixing, the estimators
diverge to infinity.) We also show how these estimates can
be used to derive consistent hypothesis tests on the mixing
coefficients.

The main difficulty of the estimation problem stems from
the fact that all mixing coefficients are inherently asymptotic
quantities, yet one only has a finite sample available. This
makes estimation a nontrivial task, especially when no a-priori
properties are assumed apart from stationarity and ergodicity
of the process. Our focus in this paper is on α and β-mixing
coefficients, as these are arguably the most widely used notions
of mixing with numerous statistical applications. One may,
of course, ask the analogous questions on other measures of
mixing. A particularly interesting notion is ϕ (or uniform)
mixing (see, e.g. Bradley [1] for a definition) since under such
conditions one has Hoeffding-type exponential inequalities in
terms of the ℓ1 norm of the sequence of ϕ-mixing coefficients,
see Rio [4, Corollary 2.1] and Samson [8]. However, it is
unclear if the ℓ1 norm of the sequence of ϕ-mixing coefficients
can be consistently estimated. In this case, a key challenge lies
in conditioning on potentially rare events whose probabilities
may be arbitrarily small. We leave this interesting challenge
for future research.

A. α and β mixing

We start by defining the notions of mixing relevant to this
paper. Let (Ω,F, µ) be a probability space, and suppose that
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U and V are two σ-subalgebras of F respectively. A classical
measure of dependence between U and V, introduced by
Rosenblatt [9], is given by

α(U,V) := sup
U∈U,V ∈V

|µ(U ∩ V )− µ(U)µ(V )|

which gives rise to the sequence of dependence coefficients
α := ⟨α(m)⟩m∈N (called the α-mixing coefficients) of a
stochastic process X = ⟨Xt⟩t∈N, where α(m) is defined as,

sup
j∈N

α(σ({Xt : 1 ≤ t ≤ j}), σ({Xt : t ≥ j +m})).

The β-dependence β(U,V) between U and V was originally
introduced by Volkonskii and Rozanov [10], [11] as follows
(see also Rio [4]). Let ι(ω) 7→ (ω, ω) be the injection map
from (Ω,F) to (Ω × Ω,U ⊗V), where U ⊗V is the product
sigma algebra generated by U×V. Let µ⊗ be the probability
measure defined on (Ω×Ω,U⊗V) obtained as the pushforward
measure of µ under ι. Let µU and µV denote the restriction
of µ to U and V respectively. Then

β(U,V) := sup
W∈σ(U×V)

|µ⊗(W )− µU × µV(W )|,

where µU × µV is the product measure on (Ω × Ω,U ⊗ V)
obtained from µU and µV. This measure of dependence leads
to the sequence β := ⟨β(m)⟩m∈N of β-mixing coefficients of
a process X, where β(m) is given by

sup
j∈N

β(σ({Xt : 1 ≤ t ≤ j}), σ({Xt : t ≥ j +m})).

A stochastic process is said to be α-mixing or strongly
mixing, if it exhibits an asymptotic independence of the form
limm→∞ α(m) = 0. It is said to be β-mixing or absolutely
regular if limm→∞ β(m) = 0. It is straightforward to check
that β(U,V) ≥ α(U,V) so that absolute regularity implies
strong mixing. Moreover, summability of α (respectively β)
is clearly a sufficient but not necessary condition for a process
to be α-mixing (respectively β-mixing).

B. The estimation problem

Regardless of whether or not a process is mixing, its mixing
coefficients provide a measure of its dependence structure.
Moreover, as mentioned above, individual α-mixing (respec-
tively β-mixing) coefficients and/or their ℓ1-norm ∥α∥ =∑

m∈N α(m) (respectively ∥β∥ =
∑

m∈N β(m)) commonly
appear in concentration inequalities for dependent processes.
Thus, in order to use these bounds in a statistical problem
where the samples may be dependent, knowledge of the
sequences α, β or at least of their ℓ1 norms is required.

For certain subclasses of dependent processes, bounds on
the mixing coefficients are known. For example, conditions
for the geometric ergodicity of Markov chains have been well
studied, see Meyn and Tweedie [12] and references therein.
More recently, some upper bounds on the mixing rates of non-
stationary ARCH processes were proposed by Fryzlewicz and
Rao [13]. However, for larger classes of stationary processes,
the mixing coefficients are typically unknown, and surprisingly
little research has been devoted to the problem of estimating
mixing coefficients. One exception is the work of McDonald,

Shalizi, and Schervish [14], [15] who provide estimators for β-
mixing coefficients and show consistency of their estimators.
Unfortunately, due to a lack of precision in the presentation,
we were unable to verify some of the main claims of these
papers. Our work does not build upon these results and we
consider a more general setting where, apart from ergodicity,
no assumptions are required on the process distributions (as
opposed to some implicit assumptions on the existence and
smoothness of finite-dimensional densities made in [14], [15]).

Towards an adaptive approach, given a sample generated by
a stationary ergodic process, our objective in this paper is to
estimate its dependence structure as reflected by its α-mixing
and β-mixing coefficients. To this end, in Section III-A, we
first focus on a subclass of stationary ergodic processes which
are α-mixing with the additional property that their sequences
of α-mixing coefficients are summable. For this class, without
knowledge of any upper-bounds on ∥α∥ and merely using
the fact that ∥α∥ < ∞, we provide asymptotically consistent
estimators of the individual α-mixing coefficients as well as
for ∥α∥. The consistency results for these estimators are
established via Theorem 1 and Theorem 2 respectively. We
rely on Rio’s covariance inequality [4, Corollary 1.1] to control
the variance of partial sums. Next, we propose an alternative
approach for consistently estimating ∥α∥ of a (not necessarily
mixing) stationary ergodic process where we no longer require
α to be summable. In this case, if the process happens to
be α-mixing with ∥α∥ < ∞, then the proposed estimator
converges to ∥α∥, otherwise it diverges to infinity. The weak
and strong consistency properties of these estimators follow
from Theorems 3 and 4. The results in this section rely on
Lemma 1 and Proposition 1 which together show that the
approximation given by (4) converges to α(m).

In Section III-B we provide analogous results for the
sequence of β-mixing coefficients of a stationary ergodic
process. Most of the arguments are similar to those given in
Section III-A, and in particular since α(m) ≤ β(m), the same
covariance inequality is sufficient to control the variance of
partial sums in the estimation. However, a key challenge in
this case is that unlike α(U,V), the β-dependence between U
and V is defined for the product space (Ω×Ω,U⊗V, µ⊗). In
order to propose an approximation that can be estimated from
a single sample-path, we rely on the identity,

β(U,V) = sup
1

2

∑
i∈N

∑
j∈N

|µ(Ui ∩ Vj)− µ(Ui)µ(Vj)|

where the supremum is taken over all pairs of countable
partitions {U1, U2, U3, . . .} and {V1, V2, V3, . . .} of Ω such
that Ui ∈ U and Vj ∈ V for each i, j ∈ N; see Bradley
[1, Vol. 1, P. 67, Note 2]. This, together with [1, Vol. 1
Proposition 3.21] gives rise to Lemma 3 which in turn leads
to Proposition 4. Analogues of Lemma 1 and Proposition 1,
these results show that the approximation (15) that is based
on the cylinder sets converges to β(m).

C. Hypothesis testing

In Section IV we show how our estimators can be used to
construct goodness-of-fit tests. First, given a sample generated
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by a stationary α-mixing (respectively β-mixing) process
µ, we use our estimator of α(m) (respectively β(m)) to
test the null hypothesis that the α-mixing (respectively β-
mixing) coefficients of µ are bounded by a given rate function
γ : N 7→ [0, 1] against the alternative hypothesis H1 that
there exists some m ∈ N such that α(m) > γ(m) (respec-
tively β(m) > γ(m)). The consistency of these tests follow
from Theorems 7 and 8, provided that the sequence of α-
mixing (respectively β-mixing) coefficients of the process is
summable. Interestingly, Nobel [16] used hypothesis testing to
estimate polynomial decay rates for covariance-based mixing
conditions. By contrast, we do not require the rate functions
to be polynomial or to belong to any specific function class.
Moreover, given a sample generated by a (not necessarily
mixing) stationary ergodic process µ, we construct tests to
discern the null hypothesis H0 that ∥α∥ (respectively ∥β∥)
is bounded by a given threshold γ ∈ [0,∞) from the
alternative hypothesis H1 that it exceeds γ. The consistency
of these procedures follow from Theorem 9 (for α-mixing
coefficients) and Theorem 10 (for β-mixing coefficients). As
a direct consequence, we obtain strongly consistent tests for
independence, obtaining an alternative proof of the main result
of Morvai and Weiss [17]; this is stated as Corollary 1.

II. PRELIMINARIES

In this section we fix our notation and introduce some
basic definitions. Let X = [0, 1] and denote by BX its
Borel σ-algebra. Denote by B(k) the product σ-algebra on
X k, k ∈ N. Let X N be the set of all X -valued infinite
sequences indexed by N. A (discrete-time) stochastic process
is a probability measure µ on the space (X N,F) where
F denotes the Borel σ-algebra on X N generated by the
cylinder sets. Associated with the process is a sequence of
random variables X := ⟨Xt⟩t∈N with process distribution
µ where Xt : X N → X are coordinate projections such
that Xt(a) = at for a = ⟨at⟩t∈N ∈ X N. We use the
term (stochastic) process to refer to either the measure µ
or to its corresponding sequence of random variables X; the
distinction should be clear from the context. A process is X
is stationary if for all i, k ∈ N and all B ∈ B(k) we have
Pr((X1, . . . , Xk) ∈ B) = Pr((X1+i, . . . , Xk+i) ∈ B). Let
S : X N → X N denote the (left) shift transformation on X N

which maps a := (a1, a2, . . .) ∈ X N to Sa = (a2, a3, . . .).
It is continuous relative to the product topology on X N and
defines a set transformation S−1 given by S−1A := {a ∈
X N : Sa ∈ A}, A ⊆ X N. Thus, it is straightforward to
check that S−1 is Borel measurable and that stationarity of
X translates to the condition that µ(S−1B) = µ(B) for all
B ∈ F. A stationary process is ergodic if every shift-invariant
measurable set has measure 0 or 1 so that if S−1B = B for
some B ∈ F then µ(B) ∈ {0, 1}. Recalling the definition of
a strongly mixing process given in the introduction, note the
well-known fact that a stationary mixing process is ergodic,
see, for example, Bradley [1].

The following notation will be used throughout the paper.
Let ∆k,ℓ be the set of dyadic cubes in X k, k ∈ N of side-

length 2−ℓ. That is,

∆k,ℓ :=
{[ i1

2ℓ
,
i1 + 1

2ℓ

)
× . . .×

[ ik
2ℓ
,
ik + 1

2ℓ

)
,

where ij ∈ {0, . . . , 2ℓ − 1}, j ∈ {1, . . . , k}
}

(1)

For each k, ℓ ∈ N we denote by Dk,ℓ := P(∆k,ℓ) the power-
set of ∆k,ℓ. For a given B ∈ B(k), k ∈ N, we denote the
event {Xi, . . . , Xi+k−1 ∈ B}, i ∈ N by [B]i+k

i . For m, ℓ ∈
N, n > m ∈ N and each j ∈ {1, . . . , n − m} define the σ
algebra generated by the sets [A]j1 for A ∈ Dj,ℓ by

Fj
1(ℓ) := σ

({
[A]j1 : A ∈ Dj,ℓ

})
(2)

and similarly let

Fn
j+m(ℓ) := σ

({
[B]nj+m+1 :B ∈ Dj′,ℓ, (3)

j′ := n−m− j
})

Remark 1 (Choice of X ). In order to keep the notation
simple and avoid uninteresting technicalities, we have chosen
to take X = [0, 1]. However, extensions to more general
spaces including to R and Rd are straightforward. For instance,
an extension to X = R can be readily achieved by modifying
the discretization in (1) such that instead of [0, 1]k, sets of the
form [−2ℓ, 2ℓ]k are partitioned into cubes of side-length 2−ℓ.

III. ESTIMATION

Consider a stationary ergodic process µ with corresponding
sequence of random variables X = ⟨Xt⟩t∈N and sequences
of α-mixing and β-mixing coefficients α := ⟨α(m)⟩m∈N and
β := ⟨β(m)⟩m∈N respectively. In this section we introduce
estimators of ∥α∥ and α(m), as well as of ∥β∥ and β(m),
and establish their consistency; these are the main results of
the paper.

We consider the somewhat simpler case of α-mixing co-
efficients in Section III-A. The corresponding estimators for
β-mixing coefficients are given Section III-B. For the most
part, the estimators – and proofs – concerning the β-mixing
coefficients are analogous to their α-mixing counterparts.
However, as discussed in Sections I-A and I-B, there is a
subtle distinction between the measurable spaces on which the
two mixing coefficients are defined. This calls for a slightly
different treatment in the case of β-mixing coefficients, giving
rise to a number of technical challenges which we address as
part of our analysis in Section III-B.

A. Approximating and estimating the α-mixing quantities

Since the mixing coefficients α(m) of X are inherently
asymptotic, we first approximate them by quantities that only
depend on finite-dimensional projections of the process and
can therefore be estimated from finite sample-paths. Subsec-
tion III-A1 below is dedicated to this task. Equipped with
the approximation results, we present our estimators for the
α-mixing parameters in Subsection III-A2. The proofs and
technical results are differed to Section VI.
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1) Approximating α(m) and ∥α∥: For each m, ℓ ∈ N, n >
m ∈ N and j ∈ {1, . . . , n−m}, define αℓ

n,j(m) as

sup
A∈Dj,ℓ

B∈Dj′,ℓ

∣∣∣µ([A]j1 ∩ [B]nj+m+1

)
− µ

(
[A]j1

)
µ
(
[B]nj+m+1

)∣∣∣
(4)

where j′ := n−m−j+1. In Lemma 1 below we show that to
approximate the α-dependence between Fj

1(ℓ) and Fn
j+m(ℓ), it

suffices to use αℓ
n,j(m) where the supremum is taken over the

smaller classes of sets Dj,ℓ and Dj′,ℓ, with j′ := n−m− j.

Lemma 1. For m, ℓ ∈ N, n > m ∈ N and j ∈ {1, . . . , n−m}
we have

αℓ
n,j(m) = α(Fj

1(ℓ),F
n
j+m(ℓ)).

For m, ℓ ∈ N, n > m ∈ N let αℓ
n(m) =

maxj∈{1,...,n−m} α
ℓ
n,j(m). The next proposition shows that

αℓ
n(m) approximates α(m) for sufficiently large values of ℓ

and n.

Proposition 1. For every m ∈ N we have

lim
n,ℓ→∞

αℓ
n(m) = α(m).

2) Estimating α(m) and ∥α∥: We are now in a position to
introduce the natural empirical estimates of the approximate
mixing coefficients αℓ

n(m). For t ∈ N let µt(X, ·) : B(k) →
[0, 1], k ∈ N denote the empirical measure

µt(X, B) :=
1

t

t−1∑
i=0

χB{Xik+1, . . . , X(i+1)k}, (5)

where χ is the indicator function. An empirical estimate of
αℓ
n(m), m, ℓ ∈ N, n > m ∈ N can be obtained as α̂ℓ

t,n(X,m)
given by

max
j∈{1,...,n−m}

max
A∈Dj,ℓ

B∈Dj′,ℓ

∣∣∣γm,j
t,n (X, A,B)− µt(X, A)µt(X, B)

∣∣∣
(6)

where j′ := n − m − j, µt(X, ·) is given by (5) and
γm,j
t,n (X, A,B) is specified as

1

t

t−1∑
i=0

χA(Xin+1, . . . , Xin+j)χB(Xin+j+m, . . . , X(i+1)n)

(7)

with t ≥ n. First, observe that when m,n, ℓ ∈ N are fixed, we
only have finitely many cylinder sets to consider in (6), hence
the ergodic theorem leads to the following result.

Proposition 2. Let X be a (not necessarily mixing) stationary
ergodic process with process distribution µ and sequence of
α-mixing coefficients α = ⟨α(m)⟩m∈N. For every m, ℓ, n ∈ N
it holds that

lim
t→∞

α̂ℓ
t,n(X,m) = αℓ

n(m), µ− almost surely.

However, this in itself is clearly not sufficient to lead to a
consistent estimate of α(m). To achieve a consistent estimate
of the α-mixing coefficient we proceed as follows.

a) Estimation under finite ∥α∥: Let us start by consid-
ering the case where the sequence of α mixing coefficients
is summable, i.e. ∥α∥ < ∞. Let ⟨ℓt⟩, ⟨nt⟩ for t ∈ N
be non-decreasing unbounded sequences of positive integers.
Let the sequence of positive numbers ⟨δt⟩t∈N be such that∑∞

t=1 δt < ∞. For each m, ℓ, n ∈ N define the constant
Cm,ℓ,n by

Cm,ℓ,n := m(22
nℓ+2mℓ+1+1). (8)

Let ⟨ϵt⟩t∈N be another sequence of positive numbers such that
limt→∞ ϵt = 0. For a fixed m ∈ N and each t ∈ N define

τt :=
Cm,ℓt,nt

mϵ2t δt
(9)

We propose an estimator for α(m) as

α̂t(X,m) := α̂ℓt
τt,nt

(X,m). (10)

Theorem 1 (α̂t is strongly consistent). For each m ∈ N and
any stationary α-mixing process X with process distribution µ
and sequence of α-mixing coefficients α such that ∥α∥ <∞
we have

lim
t→∞

α̂t(X,m) = α(m), µ− almost surely.

The proof of Theorem 1 relies on the observation that
when the ℓ1 norm of the sequence of α-mixing coefficients
is finite, we have the following nonasymptotic inequality for
the empirical version of the approximation of the mixing
coefficients.

Proposition 3. Let X be a stationary ergodic process with
process distribution µ and sequence of α-mixing coefficients
α = ⟨α(m)⟩m∈N. For every m, ℓ, n, t ∈ N and every ϵ > 0
we have

Pr(|α̂ℓ
t,n(X,m)− αℓ

n(m)| ≥ ϵ) ≤ ∥α∥Cm,ℓ,n

mtϵ2
.

Furthermore, for each M ∈ N it holds that,

Pr

(∣∣∣∣∣
M∑

m=1

α̂ℓ
t,n(X,m)− αℓ

n(m))

∣∣∣∣∣ ≥ ϵ

)
≤ ∥α∥CM,ℓ,n

tϵ2
.

A key ingredient of the proof of Proposition 3, is Lemma 2
below, which builds upon Rio’s variance bound [4, Corollary
1.1] to provide a simple concentration inequality on the empir-
ical measure of a cylinder set [D]k1 for any D ∈ Dk,ℓ, k, ℓ ∈ N.

Lemma 2. For all D ∈ Dk,ℓ, k, ℓ, t ∈ N and for every ϵ > 0,
we have

Pr
(∣∣µt(X, D)− µ([D]k1)

∣∣ ≥ ϵ
)
≤ 4 ∥α∥

tϵ2
.

Next, we introduce an estimator for ∥α∥ and prove its
consistency under the assumption that the process is stationary
α-mixing, with a summable sequence α. For t ∈ N recall the
parameters ⟨ℓt⟩, ⟨nt⟩, ⟨δt⟩, ⟨ϵt⟩ defined earlier, and let ⟨Mt⟩t∈N
be an increasing sequence of positive integers. For each t ∈ N
define,

κt :=
CMt,ℓt,nt

ϵ2t δt
(11)

θt(X) :=

Mt∑
m=1

α̂ℓt
κt,nt

(X,m). (12)
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Theorem 2 (θt is strongly consistent). For any stationary α-
mixing process X with process distribution µ and sequence
of α-mixing coefficients α such that ∥α∥ <∞, it holds that

lim
t→∞

θt(X) = ∥α∥ , µ− almost surely.

b) Estimation under arbitrary ∥α∥: In this section we
address the case when one does not have the guarantee that the
ℓ1 norm of the sequence of α-mixing coefficients is finite. This
setting is significantly more complex, since the conclusion
of Proposition 3 is potentially vacuous, irrespective of the
sample size. To circumvent this difficulty, we construct a non-
decreasing sequence of estimates of ∥α∥– starting with the
trivial lower bound 0 – by performing a sequence of tests. The
value of the estimate is only increased if there is sufficient
evidence that the value of ∥α∥ is indeed larger than the
current estimate. This is possible since if ∥α∥ happens to be
small, then its empirical estimator must be small thanks to
Proposition 3.

With the objective to make the presentation more trans-
parent, we start with a simpler estimator that is “weakly
consistent” in the sense that if one prescribes a tolerated
probability of error δ, then one may construct a corresponding
estimator that converges to ∥α∥ with probability at least 1−δ.
Then we introduce a more complex estimator that is almost
surely consistent.

In order to introduce the “weak” estimator, let δ ∈ (0, 1) be
the allowed probability of error, and let δt be positive numbers
such that

∑∞
t=1 δt = δ. Fix a countable dense subset S of

[0,∞) and let S = {s1, s2, . . .} be an arbitrary enumeration
of S . Given a process X, set ψ0(X) := 0, and for each t ∈ N
define

ψt(X) =

{
max{st, ψt−1(X)} if θt(X) > st + ϵt

√
st

ψt−1(X) otherwise,
(13)

with ϵt being a decreasing positive sequence converging to
zero and θt specified by (12). Clearly, ⟨ψt(X)⟩t∈N form a
non-decreasing sequence that is either convergent or diverges
to infinity.

Theorem 3 (ψt is weakly consistent). Let X be a (not
necessarily mixing) stationary ergodic process with process
distribution µ and sequence of α-mixing coefficients α. With
probability at least 1− δ,

lim
t→∞

ψt(X) = ∥α∥ .

We are ready to present the main result of the paper:
an estimator for ∥α∥ which, as shown below, is strongly
consistent regardless of whether this norm is finite or infinite.
To this end, we build upon the construction of ψt(X), which
gives rise to our third estimator of ∥α∥. Recall that S is
a countable dense subset of [0,∞). Define a sequence ⟨ut⟩
such that ut ∈ S for all t and for every s ∈ S , the set

{t ∈ N : ut = s} is infinite. The sequence ⟨ut⟩ “visits” each
element of S infinitely often. One such example is:

u1 = s1,

u2 = s1, u3 = s2,

u4 = s1, u5 = s2, u6 = s3,

...

The estimator ξt given by (14) below keeps track of a “bit
value” bt(s) ∈ {0, 1} assigned to each s ∈ S . At each time
instance, bt(s) marks the outcome of the test the last time
the value s was tested. With b0(s) = 1 for all s ∈ S, and
ξ0(X) := 0, for each t ∈ N let

bt(s) =

 1 if ut = s and θt(X) ≤ s+ ϵt
√
s

0 if ut = s and θt(X) > s+ ϵt
√
s

bt−1(s) otherwise

and define

ξt(X) = inf {s ∈ S : bt(s) = 1} , (14)

where the infimum is defined to be zero if the set is empty.

Theorem 4 (ξt is strongly consistent). Let X be a (not
necessarily mixing) stationary ergodic process with process
distribution µ and sequence of α-mixing coefficients α. We
have,

lim
t→∞

ξt(X) = ∥α∥ , µ− almost surely.

B. Approximating and estimating the β-mixing quantities

In this section, we derive estimators concerning the β-
mixing coefficients of a stationary ergodic process. For the
most part, the results are analogous to those given in Sec-
tion III-A. An overview of the similarities and differences
between the two settings is provided in the Introduction.

We start by defining an approximation of the β-mixing coef-
ficients of X. Recall the notation Dk,ℓ, k, ℓ ∈ N introduced in
the beginning of Section III which corresponds to the power-
set P(∆k,ℓ) of the set of dyadic cubes in X k of side-length
2−ℓ. For m, ℓ ∈ N, n > m ∈ N and j ∈ {1, . . . , n−m}, let
βℓ
n,j(m) be defined as

1

2

∑
A∈Dj,ℓ

∑
B∈Dj′,ℓ

∣∣∣µ([A]j1 ∩ [B]nj+m+1

)
(15)

− µ
(
[A]j1

)
µ
(
[B]nj+m+1

)∣∣∣
where j′ := n−m− j + 1. The intuition behind this choice
follows from the discussion provided in Section I-B. Recall the
σ-subalgebras of F, denoted Fj

1(ℓ) and Fn
j+m(ℓ), with m, ℓ ∈

N, n > m ∈ N and j ∈ {1, . . . , n−m}, as given by (2) and
(3) respectively. In a manner analogous to the estimation of
the α-mixing coefficients, we show via Lemma 3 below that
to approximate the β-dependence between between Fj

1(ℓ) and
Fn
j+m(ℓ), it suffices to use βℓ

n,j(m) given by (15). Note that
the π − λ argument used in the proof of Lemma 1 does not
carry over to this case where summations are involved in (15)
in place of the suprema in (4).
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Lemma 3. For m, ℓ ∈ N, n > m ∈ N and j ∈ {1, . . . , n−m}
we have

βℓ
n,j(m) = β(Fj

1(ℓ),F
n
j+m(ℓ)).

For m, ℓ ∈ N, n > m ∈ N, let βℓ
n(m) =

max
j∈{1,...,n−m}

βℓ
n,j(m) define an approximation of β(m).

Proposition 4. For every m ∈ N we have

lim
n,ℓ→∞

βℓ
n(m) = β(m).

An empirical estimate of βℓ
n(m), m, ℓ ∈ N, n > m ∈ N,

denoted β̂ℓ
t,n(X,m), can be obtained as

max
j∈{1,...,n−m}

1

2

∑
A∈Dj,ℓ

∑
B∈Dj′,ℓ

∣∣∣γm,j
t,n (X, A,B) (16)

− µt(X, A)µt(X, B)
∣∣∣

where j′ := n −m − j, µt(X, ·) and γm,j
t,n (X, ·, ·) are given

by (5) and (7) respectively. As with Lemma 2, since for fixed
m,n, ℓ ∈ N we only have finitely many cylinder sets to
consider in (16), a simple application of the ergodic theorem
gives the following lemma.

Lemma 4. Let X be a (not necessarily mixing) stationary
ergodic process with process distribution µ and sequence of
β-mixing coefficients β = ⟨β(m)⟩m∈N. For every m, ℓ, n ∈ N
it holds that

lim
t→∞

β̂ℓ
t,n(X,m) = βℓ

n(m), µ− almost surely.

For each m, ℓ, k ∈ N let the constant C̃m,ℓ,k be given by

C̃m,ℓ,k := m(22
2kℓ+1+2mℓ+1+2). (17)

An argument analogous to that given for Proposition 3 leads
to the following result.

Proposition 5. Let X be a stationary ergodic process with
process distribution µ and sequence of β-mixing coefficients
β = ⟨β(m)⟩m∈N. For every m, ℓ, n, t ∈ N and every ϵ > 0
we have

Pr(|β̂ℓ
t,n(X,m)− βℓ

n(m)| ≥ ϵ) ≤ ∥β∥ C̃m,ℓ,n

mtϵ2

with C̃m,ℓ,n given by (17). Moreover, for each M ∈ N,

Pr

(∣∣∣∣∣
M∑

m=1

β̂ℓ
t,n(X,m)− βℓ

n(m))

∣∣∣∣∣ ≥ ϵ

)
≤ ∥β∥ C̃M,ℓ,n

tϵ2
.

As in the previous section, let ⟨ℓt⟩, ⟨nt⟩ for t ∈ N be
non-decreasing unbounded sequences of positive integers. Let
the sequence of positive real numbers ⟨δt⟩t∈N be such that∑∞

t=1 δt <∞. Let ⟨ϵt⟩t∈N be another sequence of positive real
numbers such that limt→∞ ϵt = 0. Furthermore let ⟨Mt⟩t∈N
be an increasing sequence of positive integers. For each t ∈ N
let

τ̃t :=
C̃m,ℓt,nt

mϵ2t δt
, m ∈ N and κ̃t :=

C̃Mt,ℓt,nt

ϵ2t δt
, (18)

with the constant C̃m,ℓ,n given by (17). Define

β̂t(X,m) := β̂ℓt
τ̃t,nt

(X,m),

θ̃t(X) :=

Mt∑
m=1

β̂ℓt
κ̃t,nt

(X,m). (19)

Using Proposition 4, Proposition 5 and based on the choice
of parameters specified by (18), arguments analogous to those
given for Theorem 1 and Theorem 2, yield the following result.

Theorem 5 (β̂t and θ̃t are strongly consistent). For each
m ∈ N and any stationary β-mixing process X with process
distribution µ and sequence of β-mixing coefficients β such
that ∥β∥ <∞ we have

lim
t→∞

β̂t(X,m) = β(m)

and
lim
t→∞

θ̃t(X) = ∥β∥ , µ− almost surely.

Next, we introduce two estimators for ∥β∥, which are
analogous to those given by (13) and (14) for the estimation
of ∥α∥. As in the previous section, let S := {s1, s2, . . .} be
a countable dense subset of [0,∞). Given a process X, set
ψ̃0(X) := 0, and for each t ∈ N define

ψ̃t(X) =

{
max{st, ψ̃t−1(X)} if θ̃t(X) > st + ϵt

√
st

ψ̃t−1(X) otherwise,

with θ̃t specified by (18). Define a sequence ⟨ut⟩ such that
ut ∈ S for all t and for every s ∈ S , the set {t ∈ N :
ut = s} is infinite. The sequence ⟨ut⟩ “visits” each element
of S infinitely often. As in the case of ξt given by (14),
the estimator ξ̃t given by (20) below keeps track of the the
outcome of the test when the value s ∈ S was last tested. Set
b̃0(s) = 1 for all s ∈ S, and ξ̃0(X) := 0; for each t ∈ N, let

b̃t(s) =

 1 if ut = s and θ̃t(X) ≤ s+ ϵt
√
s

0 if ut = s and θ̃t(X) > s+ ϵt
√
s

bt−1(s) otherwise.

and define

ξ̃t(X) = inf
{
s ∈ S : b̃t(s) = 1

}
(20)

where the inf is defined to be zero if the set is empty. Thanks
to Theorem 5, Proposition 5, Proposition 4, and Lemma 4, and
based on arguments analogous to those given for Theorem 3
and Theorem 4, it can be shown that ψ̃t and ξ̃t are consistent,
regardless of the summability of β. More specifically, we have
the following results.

Theorem 6 (ψ̃t and ξ̃t are weakly and strongly consistent
respectively). Let X be a (not necessarily mixing) stationary
ergodic process with process distribution µ and sequence of
β-mixing coefficients β. With µ-probability at least 1− δ, we
have

lim
t→∞

ψ̃t(X) = ∥β∥ .

Moreover, it holds that

lim
t→∞

ξ̃t(X) = ∥α∥ , µ− almost surely.
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IV. GOODNESS-OF-FIT TESTING

In this section we use our estimators to construct consistent
hypothesis tests for mixing rates as well as for upper bounds
on ∥α∥ and ∥β∥.

A. Test for mixing rates

Consider a stationary ergodic process X with process distri-
bution µ and sequences of α-mixing and β-mixing coefficients
α = ⟨α(m)⟩m∈N and β = ⟨β(m)⟩m∈N respectively. A
mapping γ : N → [0, 1] is called an α-mixing rate function
for µ if for each m ∈ N we have α(m) ≤ γ(m). Similarly, it
is said to be a β-mixing rate function for µ if for each fixed
m ∈ N it holds that β(m) ≤ γ(m). We wish to test the null
hypothesis H0 that γ is an α-mixing (respectively β-mixing)
rate function for µ against the alternative hypothesis H1 that
there exists some m ∈ N such that α(m) > γ(m) (respectively
β(m) > γ(m)) . More formally, let C α be the class of
stationary α-mixing processes whose sequence of α-mixing
coefficients α = ⟨α(m)⟩m∈N is summable, that is, such that
∥α∥ < ∞. Similarly, let C β be the class of stationary β-
mixing processes whose sequence of β-mixing coefficients is
such that ∥β∥ <∞. For a rate function γ, let Rα

γ (respectively
Rβ

γ ) be the class of all processes which have γ as an α-mixing
(respectively β-mixing) rate function. We construct a sequence
⟨gt⟩t∈N of functions gt : X N → {+1,−1}, t ∈ N each
measurable with respect to the filtration Ft such that given a
sample X generated by µ ∈ C α, with probability 1, produce

lim
t→∞

gt(X) =

{
+1 if µ ∈ C α ∩ Rα

γ

−1 if µ ∈ C α \ Rα
γ .

(21)

We call such a sequence of function satisfying (21) a strongly
consistent goodness-of-fit test for rate function γ on C α. Anal-
ogously, we construct a sequence ⟨g̃t⟩t∈N of Ft-measurable
functions g̃t : X N → {+1,−1}, t ∈ N such that with
probability 1,

lim
t→∞

g̃t(X) =

{
+1 if µ ∈ C β ∩ Rβ

γ

−1 if µ ∈ C β \ Rβ
γ .

(22)

To construct our tests, let us recall some relevant notation
from the previous sections. For t ∈ N let ⟨Mt⟩, ⟨ℓt⟩, ⟨nt⟩ be
increasing sequences of positive integers. Take δ ∈ (0, 1) and
let the sequence of positive real numbers ⟨δt⟩t∈N be such that∑∞

t=1 δt = δ. Let ⟨ϵt⟩t∈N be another sequence of positive
numbers such that limt→∞ ϵt = 0. For each m ∈ N and
t ∈ N recall the estimators α̂t(X,m) := α̂ℓt

τt,nt
(X,m) and

β̂t(X,m) := β̂ℓt
τ̃t,nt

(X,m) respectively specified by (10) and
(19), with τt given by (9) and τ̃t by (18). For a given process
X and every t ∈ N define

gt(X) :=

{
+1 if α̂t(X,m) ≤ γ(m) + ϵt, m ∈ {1, . . . ,Mt}
−1 otherwise

(23)
and

g̃t(X) :=

{
+1 if β̂t(X,m) ≤ γ(m) + ϵt, m ∈ {1, . . . ,Mt}
−1 otherwise

(24)

Theorem 7. The sequence of functions gt, t ∈ N given by
(23) give rise to a goodness-of-fit test on C α that is strongly
consistent in the sense of (21).

It is straightforward to check that a similar argument based
on Proposition 4 and Proposition 5 leads to the following
analogous result concerning β-mixing rate functions.

Theorem 8. The sequence of functions g̃t, t ∈ N defined by
(24) gives rise to a goodness-of-fit test on C β that is strongly
consistent in the sense of (22).

B. Test for an upper bounds on ∥α∥ and ∥β∥
We propose an asymptotically consistent test for an upper-

bound on ∥α∥ (respectively ∥β∥) of a stationary ergodic
process that is not necessarily mixing. Denote by E the set
of all X -valued stationary ergodic processes. As in Sec-
tion IV-A, let C α (respectively C β) be the class of stationary
α-mixing (respectively β-mixing) processes whose sequence
of α-mixing (respectively β-mixing coefficients) is summable.
Observe that C β ⊂ C α ⊂ E . Given a sample X generated by
µ ∈ E , we wish to test the null hypothesis H0 that ∥α∥ ≤ γ
(respectively ∥β∥ ≤ γ) for some fixed threshold γ ∈ [0,∞)
against the alternative hypothesis that ∥α∥ > γ (respectively
∥β∥ ≤ γ). Let ⟨ζt⟩t∈N be a decreasing sequence of positive
real numbers such that limt→∞ ζt = 0. For a sample X, define
the sequences ⟨ft⟩t∈N and ⟨f̃t⟩t∈N of Ft-measurable functions

ft(X) :=

{
+1 if ξt(X) ≤ γ + ζt

−1 otherwise
(25)

and

f̃t(X) :=

{
+1 if ξ̃t(X) ≤ γ + ζt

−1 otherwise,
(26)

where ξt(X) is given by (14) and ξ̃t(X) is given by (20).
For each γ ∈ [0,∞) denote by C α

γ the subclass of C α cor-
responding to stationary α-mixing processes whose sequences
of α-mixing coefficients sum to at most γ. A simple argument
which relies on Theorem 4 yields the following result.

Theorem 9. For each γ ∈ [0,∞), and given a sample X
generated by a (not necessarily mixing) stationary ergodic
process µ ∈ E , with probability 1 the test ⟨ft⟩t∈N given by
(25) has the property that

lim
t→∞

ft(X) =

{
+1 if µ ∈ C α

γ

−1 if µ ∈ E \ C α
γ .

Similarly, an argument based on Theorem 6, leads to the
following analogous result.

Theorem 10. For each γ ∈ [0,∞), and given a sample X
generated by a (not necessarily mixing) stationary ergodic
process µ ∈ E , with probability 1 the test ⟨f̃t⟩ given by (26)
has the property that

lim
t→∞

f̃t(X) =

{
+1 if µ ∈ C β

γ

−1 if µ ∈ E \ C β
γ .
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C. Test for independence

Using Theorem 9, we can readily obtain a consistent test for
independence on E . Consider a process X with distribution µ.
Recall that I denotes the set of all X -valued i.i.d. processes,
and observe that if µ ∈ I then clearly ∥α∥ = 0. Thus, if
µ ∈ E we can use (25) with γ = 0 to test the null hypothesis
H0 that µ ∈ I against the alternative hypothesis H1 that
µ ∈ E \ I so that the process is stationary ergodic but it is
not i.i.d.. More specifically, let ⟨ζt⟩ be a decreasing sequence
of positive real numbers as before, such that limt→∞ ζt = 0.
For a given process X and each t ∈ N define

f t(X) :=

{
+1 if α̂t(X) ≤ ζt

−1 otherwise
(27)

Observing that ∥α∥ = 0 for all i.i.d. processes µ ∈ I , the
consistency of (27) trivially follows from Theorem 9, leading
to the following corollary.

Corollary 1 (Morvai and Weiss [17]). There exists a strongly
consistent test for independence on E . That is, for a stationary
ergodic process X with process distribution µ ∈ E with
probability one it holds that

lim
t→∞

f t(X) =

{
+1 if µ ∈ E ∩ I

−1 if µ ∈ E \ I .

This recovers, albeit via a different approach, the main result
of Morvai and Weiss [17].

V. OUTLOOK

We studied the problem of estimating the mixing coef-
ficients of a real-valued, stationary ergodic process from a
finite sample-path. As an initial step, we proposed strongly
consistent estimators of individual α-mixing coefficients for
a subclasses of stationary processes whose sequences of α-
mixing coefficients are summable. We also provided strongly
consistent estimators of the ℓ1 norm of the sequence α-mixing
coefficients for this class of processes, and extended the results
to the case where the stationary process is not necessarily α-
mixing. Our main inspiration for estimating ∥α∥ has been
that the ℓ1 norms of the sequences of mixing coefficients
naturally appear in concentration of measure inequalities for
dependent processes. We further proposed analogous results
concerning β-mixing coefficients. Finally, building upon our
estimators we developed strongly consistent hypothesis tests
for mixing rates as well as for upper bounds on ∥α∥ and
∥β∥. This, in turn, gave rise to a strongly consistent test for
independence, recovering the main result of Morvai and Weiss
[17] as a corollary. A particularly interesting open problem
is to estimate the ℓ1 norm of the sequence of ϕ-mixing
coefficients. Indeed, as mentioned in the Introduction, when a
process is ϕ-mixing, one can obtain exponential concentration
inequalities in terms of ∥ϕ∥. However, the main difficulty
in estimating the ϕ-mixing coefficients is to consistently
estimate the conditional probabilities, as some events may be
of arbitrarily small measure. We conjecture that this challenge
may be overcome by generalizing the plug-in estimators of
Grünewälder [18] which are designed for the i.i.d. setting.

VI. PROOFS

In this section we provide proofs of our technical results.

Proof of Lemma 1. Fix m, ℓ ∈ N, n > m ∈ N and j ∈
{1, . . . , n−m}. It is clear that αℓ

n,j(m) ≤ α(Fj
1(ℓ),F

n
j+m(ℓ)).

Therefore, it suffices to show that α(Fj
1(ℓ),F

n
j+m(ℓ)) ≤

αℓ
n,j(m). We show this using Dynkin’s π − λ theorem as

follows. Define Aj
1(ℓ) := {[A]j1 : A ∈ Dj,ℓ} and

An
j+m(ℓ) := {[B]nj+m+1 : B ∈ Dj′,ℓ, j

′ := n−m− j}.

It trivially holds that Aj
1(ℓ) forms a π-system, since it is non-

empty and closed under finite intersections. On the other hand,
by definition we have

sup
U∈Aj

1(ℓ)
V ∈An

j+m(ℓ)

|µ(U ∩ V )− µ(U)µ(V )| = αℓ
n,j(m). (28)

Let L be the largest algebra of subsets of F such that

sup
U∈L

V ∈An
j+m(ℓ)

|µ(U ∩ V )− µ(U)µ(V )| ≤ αℓ
n,j(m).

It is straightforward to verify that L forms a λ-system. To
see this, first note that since αℓ

n,j(m) ≥ 0, it clearly holds
that X N ∈ L. Next, take U1 ⊆ U2 ∈ L. Since L is an
algebra, it is closed under complementation as well as under
pairwise unions and intersections. Therefore, (U2 \ U1) ∈ L.
Finally, consider a countable sequence of increasing subsets
Ui ⊆ Ui+1 ∈ L, i ∈ N and define U :=

⋃∞
i=1 Ui.

It follows from the continuity of probability measure that
U ∈ L. To see this, for V ∈ An

j+m(ℓ) define U i :=

Ui∩V, i ∈ N, and let U :=
⋃∞

i=1 U i. Observe that U i ⊆ U i+1

so that limn→∞ µ(Un) = µ(U). Similarly, it holds that
limn→∞ µ(Un) = µ(U). Fix ϵ > 0 there exist Nϵ, N

′
ϵ such

that for all n ≥ max{Nϵ, N
′
ϵ} we have |µ(Un) − µ(U)| ≤ ϵ

and |µ(Un)− µ(U)| ≤ ϵ. Therefore,∣∣∣µ(U ∩ V )− µ(U)µ(V )
∣∣∣

=
∣∣µ(U)− µ(U)µ(V )

∣∣
≤
∣∣µ(Un)− µ(Un)µ(V )

∣∣+ 2ϵ

≤ αℓ
n,j(m) + 2ϵ.

Since the choice of epsilon is arbitrary, it follows that U ∈
L. Therefore L is a λ-system. Moreover, by (28) we have
Aj

1(ℓ) ⊆ L. Thus, as follows from Dynkin’s π − λ theorem,
we can deduce that σ(Aj

1(ℓ)) ⊆ L so that

sup
U∈σ(Aj

1(ℓ))
V ∈An

j+m(ℓ)

|µ(U ∩ V )− µ(U)µ(V )| ≤ αℓ
n,j(m). (29)

On the other hand, let L′ be the largest algebra of subsets of
F such that

sup
U∈σ(Aj

1(ℓ))

V ∈L′

|µ(U ∩ V )− µ(U)µ(V )| ≤ αℓ
n,j(m).

In much the same way as with L, it is straightforward to check
that L′ is a λ-system. Moreover, by (29) and an argument
analogous to that concerning Aj

1(ℓ), we can conclude that
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An
j+m(ℓ) ⊆ L′. Hence, by another application of the π − λ

theorem, we obtain σ(An
j+m(ℓ)) ⊆ L′. This gives

sup
U∈σ(Aj

1(ℓ))
V ∈σ(An

j+m(ℓ))

|µ(U ∩ V )− µ(U)µ(V )| ≤ αℓ
n,j(m).

Noting that σ(Aj
1(ℓ)) = Fj

1(ℓ) and σ(Aj
j+m(ℓ)) = Fn

j+m(ℓ),
we obtain α(Fj

1(ℓ),F
n
j+m(ℓ)) ≤ αℓ

n,j(m).

Proof of Proposition 1. Fix m, ℓ ∈ N and n > m. Ob-
serve that for each j ∈ {1, . . . , n − m} we have Fj

1(ℓ) ⊂
Fj
1(ℓ + 1), ℓ ∈ N and Fn

j+m(ℓ) ⊂ Fn+1
j+m(ℓ + 1), n, ℓ ∈

N are each a sequence of σ-algebras with
∨∞

ℓ Fj
1(ℓ) =

σ(X1, . . . , Xj) and
∨∞

n,ℓ F
n
j+m(ℓ) = σ({Xt : t ≥ j +

m + 1}). Therefore, by Bradley [1, Vol. 1, Proposition 3.18]
limn,ℓ→∞ α(Fj

1(ℓ),F
n
j+m(ℓ)) is given by

α(σ({Xt : t ∈ {1, . . . , j}}), σ({Xt : t ≥ j +m+ 1})).
(30)

It is straightforward to check that for each m ∈ N we have

sup
n,ℓ

max
j∈{1,...,n−m}

αℓ
n,j(m) = sup

j∈N
sup

n≥j+m+1
sup
ℓ
αℓ
n,j(m).

(31)

To see this first let c := supj∈N supn≥j+m supℓ α
ℓ
n,j(m) and

fix some ϵ > 0; by the definition of sup there exist ℓ∗, j∗ ∈ N
and n∗ ≥ j∗+m such that αℓ

n∗,j∗(m) ≥ c−ϵ. We have c−ϵ ≤
αℓ
n∗,j∗(m) ≤ supn,ℓ maxj∈{1,...,n−m} α

ℓ
n,j(m). Similarly, let

c′ := supn,ℓ maxj∈{1,...,n−m} α
ℓ
n,j(m), and note that there

exist some n′, ℓ′ ∈ N such that maxj∈1,...,n′−m αℓ′

n′,j(m) ≥
c′ − ϵ. It follows that c′ − ϵ ≤ maxj∈1,...,n′−m αℓ′

n′,j(m) ≤
supj∈N supn≥j+m supℓ α

ℓ
n,j(m). Since the choice of ϵ is

arbitrary, (31) follows. We obtain

lim
n,ℓ→∞

αℓ
n(m) = lim

n,ℓ→∞
max

j∈{1,...,n−m}
αℓ
n,j(m)

= sup
n,ℓ

max
j∈{1,...,n−m}

αℓ
n,j(m) (32)

= sup
j∈N

sup
n≥j+m

sup
ℓ
αℓ
n,j(m) (33)

= sup
j∈N

lim
n,ℓ→∞

αℓ
n,j(m) (34)

= sup
j∈N

lim
n,ℓ→∞

α(Fj
1(ℓ),F

n
j+m(ℓ)) (35)

= α(m), (36)

where (32) and (34) follow from the fact that for a fixed m ∈
N, αℓ

n,j(m) is an increasing function of n, ℓ, (33) follows from
(31), (35) follows from Lemma 1, and (36) follows from (30).

The proof of Lemma 2 is provided next. A key ingredient
of the analysis is the concentration inequality of Rio, which
is stated below for completeness.

Lemma 5 (Rio [4, Corollary 1.1]). Let ⟨Yi⟩i≥0 be a stationary
sequence of [−1, 1]-valued random variables. Define α(m) :=
α(σ(Y0), σ(Ym)) and suppose that ∥α∥ :=

∑
m∈N α(m) <

∞. For each t ∈ N, let St := Y0 + . . .+ Yt−1. We have

Var(St) ≤ 4t ∥α∥ .

Proof of Lemma 2. Let N := N ∪ {0}. For each D ∈
Dk,ℓ, k, ℓ ∈ N define the [−1, 1]-valued sequence of random
variables ⟨Yi⟩i∈N where Yi := χD{Xik+1, . . . , X(i+1)k} −
µ([D]k1), i ∈ N. Observe that ⟨Yi⟩ti∈N is a zero-mean [−1, 1]-
valued stationary process and for each m ∈ N we have,

α(σ(Y0), σ(Ym))

≤ α(σ(X1, . . . , Xk), σ(Xmk+1, . . . , X(m+1)k))

≤ α(k(m− 1) + 1)

where the first inequality follows from the fact that by def-
inition we have σ(Y0) ⊂ σ(X1, . . . , Xk) and that σ(Ym) ⊂
σ(Xmk+1, . . . , X(m+1)k), and the second inequality follows
form the definition of the α-mixing coefficients of X. Thus,
we obtain∑

m∈N
α(σ(Y0), σ(Ym)) ≤

∑
m∈N

α(k(m− 1) + 1)

≤
∑
m∈N

α(m)

= ∥α∥

where, the second inequality follows from the fact that α(m)
is a decreasing sequence so that α(u) ≤ α(v), u > v ∈ N.

Let St :=
∑t−1

i=0 Yi. By Chebychev’s inequality together
with Lemma 5, and noting that by definition α(m) ≤ α(m),
we obtain

Pr
(∣∣∣µt(X, D)− µ([D]k1)

∣∣∣ ≥ ϵ
)
= Pr(|St| ≥ tϵ)

≤ Var(St)

t2ϵ2

≤ 4 ∥α∥
tϵ2

.

Proof of Proposition 3. Fix ϵ > 0. For t, n ∈ N define

Ωt,n :=

{
max

D∈Dn,ℓ

|µt(X, D)− µ([D]n1 )| ≤ ϵ/22
mℓ

}
.

By Lemma 2 and a union bound we obtain,

Pr(Ωt,n) ≥ 1− (22
nℓ+2mℓ+1

)
∥α∥
tϵ2

.

For all ω ∈ Ωt,n, and each A ∈ Dj,ℓ, B ∈ Dj′,ℓ, j ∈
{1, . . . , n−m}, j′ := n−m−j+1 the following inequalities
hold. First we have,∣∣∣γm,j

t,n (X, A,B)− µ([A]j1 ∩ [B]nj+m+1)
∣∣∣

≤
∑

C∈Dm,ℓ

|µt(X, A× C ×B)− µ([A× C ×B]n1 )|

≤ ϵ.

Next, it holds that∣∣∣µt(X, A)µt(X, B)− µ([A]j1)µ([B]nj+m+1)
∣∣∣

≤ |µt(X, A)− µ([A]j1)||µt(X, B)− µ([B]nj+m+1)|
+ µ([A]j1)|µt(X, B)− µ([B]nj+m+1)|

+ µ([B]nj+m+1)|µt(X, A)− µ([A]j1)|

≤ ϵ2/(22
mℓ+1) + 2ϵ/(22

mℓ

) ≤ ϵ.
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Recall the convention j′ := j − n −m for j ∈ {1, . . . , n −
m}. Define the events E1 := {∃j, A ∈ Dj,ℓ, B ∈
Dj′,ℓ : |γm,j

t,n (X, A,B) − µ([A]j1 ∩ [B]nj+m+1)| ≥ ϵ} and
E2 := {∃j, A ∈ Dj,ℓ, B ∈ Dj′,ℓ : |µt(X, A)µt(X, B) −
µ([A]j1)µ([B]nj+m)| ≥ ϵ}. We obtain,

Pr(|α̂ℓ
t,n(X,m)− αℓ

n(m)| ≥ ϵ) ≤ Pr(E1) + Pr(E2)

≤ 2Pr(Ωc
t,n)

≤ (22
nℓ+2mℓ+1+1)

∥α∥
tϵ2

.

Thus, (8) gives CM,ℓ,n =M(22
nℓ+2Mℓ+1+1) for each M ∈

N, and we obtain

Pr(|
M∑

m=1

α̂ℓ
t,n(X,m)− αℓ

n(m)| ≥ ϵ)

≤ Pr(

M∑
m=1

|α̂ℓ
t,n(X,m)− αℓ

n(m)| ≥ ϵ)

≤ ∥α∥CM,ℓ,k

tϵ2
.

Proof of Theorem 1. Fix ϵ > 0. As follows from Proposi-
tion 1, there exist Lϵ, Nϵ ∈ N such that for all n ≥ Nϵ

and all ℓ ≥ Lϵ we have,

|αℓ
n(m)− α(m)| ≤ ϵ. (37)

Let T (1)
ϵ ∈ N be such that ℓt ≥ Lϵ, nt ≥ Nϵ for t ≥ T

(1)
ϵ .

Define the events

Et :=
{∣∣α̂t(X,m)− αℓ

n(m)
∣∣ ≥ ϵt

}
, t ∈ N.

Since as specified by (9) τt =
Cm,ℓt,nt

ϵ2tδt
, then by Proposition 3

for each t ∈ N it holds that

Pr(Et) ≤
∥α∥Cm,ℓt,nt

mτtϵ2t
≤ ∥α∥ δt

m
. (38)

Let δ :=
∑

t∈N δt and note that δ < ∞. Define
E := lim supt→∞Et =

⋂∞
t=1

⋃∞
t′=tEt′ . By (38) we have∑

t∈N Pr(Et) ≤ ∥α∥
m

∑
t∈N δt =

∥α∥
m δ <∞, since ∥α∥ <∞.

Therefore, by the Borel-Cantelli Lemma we obtain Pr(E) = 0.
As a result, there exists some random T ∗ (which depends on
the sample-path) such that for all t ≥ T ∗ we have∣∣α̂t(X,m)− αℓt

nt
(m)

∣∣ ≤ ϵt, µ− almost surely. (39)

Let T (2)
ϵ ∈ N be large enough such that for all t ≥ T

(2)
ϵ

we have ϵt ≤ ϵ/2 . Take t ≥ max{T ∗, T
(1)
ϵ , T

(2)
ϵ }, with

probability one we have |α̂t(X,m) − α(m)| ≤ |α̂t(X,m) −
αℓt
nt
(m)| + ϵ ≤ ϵt + ϵ ≤ ϵ where the first inequality follows

from (37) and the second inequality follows from (39).

Proof of Theorem 2. Fix ϵ > 0. Since ∥α∥ <∞, there exists
some Mϵ ∈ N such that

∑∞
m=Mϵ+1 α(m) ≤ ϵ/5. Let ϵ′ :=

ϵ
5Mϵ

. As follows from Proposition 1, for each t ∈ N, there
exist Lϵ′ , Nϵ′ ∈ N such that for all n ≥ Nϵ′ and all ℓ ≥ Lϵ′

we have,
max

m∈1,...,Mϵ

∣∣αℓ
n(m)− α(m)

∣∣ ≤ ϵ′. (40)

Let T (1)
ϵ ∈ N be such that Mt ≥Mϵ, ℓt ≥ Lϵ′(t), nt ≥ Nϵ′(t)

for t ≥ T
(1)
ϵ . Define the sequence of events

Et :=

{∣∣∣∣∣θt(X)−
Mt∑
m=1

αℓt
nt
(m)

∣∣∣∣∣ ≥ ϵt

}
, t ∈ N.

Since κt =
CMt,ℓt,nt

ϵ2tδt
, then by Proposition 3 for each t ∈ N

we have

Pr(Et) ≤
∥α∥CMt,ℓt,nt

tϵ2t
≤ ∥α∥ δt.

Let δ :=
∑

t∈N δt and note that δ < ∞. Define
E := lim supt→∞Et =

⋂∞
t=1

⋃∞
t′=tEt′ . It follows that∑

t∈N Pr(Et) ≤ ∥α∥
∑

t∈N δt = ∥α∥ δ < ∞. Therefore, by
the Borel-Cantelli Lemma we obtain Pr(E) = 0. As a result,
there exists some random T ∗ (which depends on the sample-
path) such that for all t ≥ T ∗ we have∣∣∣∣∣θt(X)−

Mt∑
m=1

αℓt
nt
(m)

∣∣∣∣∣ ≤ ϵt, µ− almost surely.

Let T (2)
ϵ ∈ N be large enough so that ϵt ≤ ϵ/5 for t ≥ T

(2)
ϵ .

With probability one, for all t ≥ max{T ∗, T
(1)
ϵ , T

(2)
ϵ } obtain,∣∣∣θt(X)− ∥α∥

∣∣∣
≤
∣∣∣θt(X)−

Mt∑
m=1

αℓt
nt
(m)

∣∣∣
+
∣∣∣ Mt∑
m=1

αℓt
nt
(m)−

Mt∑
m=1

α(m)
∣∣∣+ ϵ/5

≤
Mϵ∑
m=1

|αℓt
nt
(m)− α(m)|

+

Mt∑
m=Mϵ+1

(αℓt
nt
(m) + α(m)) + 2ϵ/5 (41)

≤ ϵ, (42)

where (41) follows from the fact that for all n, ℓ,m ∈ N we
have αℓ

n(m) ≥ 0 and α(m) ≥ 0, and (42) follows from (40)
and that by definition αℓ

n(m) ≤ α(m) for all n, ℓ,m ∈ N.

Proof of Theorem 3. First, we prove that with probability at
least 1 − δ we have limt→∞ ψt(X) ≤ ∥α∥ . If ∥α∥ = ∞
then there is nothing to prove, so we may assume ∥α∥ <∞.
Consider any st > ∥α∥. Then

Pr
(
θt(X) > st + ϵt

√
st

)
≤ Pr

(
θt(X) >

Mt∑
m=1

α(m) + ϵt
√
st

)
(43)

≤ ∥α∥CMt,ℓt,nt

κtstϵ2t
(44)

≤ δt, (45)

where (43) follows from the fact that
∑Mt

m=1 α(m) ≤ ∥α∥ <
st, (44) follows from Proposition 3 and (45) from the choice
of κt given by (11), together with noting that st > ∥α∥.
Observing that

∑
t∈N δt = δ, the union bound implies
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Pr
({

∃st > ∥α∥ : θt(X) > st + ϵt
√
st
})

≤ δ. It remains to
prove that limt→∞ ψt(X) ≥ ∥α∥ with probability one. To
this end, first assume that ∥α∥ < ∞. We show that, with
probability one, for any η < ∥α∥, there exists some st > η
such that θt(X) > st + ϵt

√
st. Fix some η < ∥α∥ and let

ϱ = ∥α∥ − η. Recall that ⟨ϵt⟩ is a decreasing sequence of
positive real numbers with limt→∞ ϵt = 0. Therefore, there
exists some T1 such that for all t ≥ T1,

∥α∥ − 7ϱ

8
+ ϵt

√
∥α∥ − 7ϱ

8
< ∥α∥ − 3ϱ

4
. (46)

By Theorem 2 there exists some random T2 ∈ N such that,
for all t ≥ T2 with probability one we have,

θt(X) ≥ ∥α∥ − 3ϱ

4
. (47)

Moreover, with S chosen to be a countable dense subset of
[0,∞) we can find some t ≥ max{T1, T2} such that st ∈
(η, ∥α∥ − 7ϱ/8). It follows that

st + ϵt
√
st < ∥α∥ − 3ϱ

4
≤ θt(X), (48)

where the first inequality follows from the fact that st < ∥α∥−
7ϱ/8, and the second inequality follows from (47). As a result,
we obtain ψt(X) > η as claimed. Finally, suppose that ∥α∥ =
∞ and fix some η ∈ N. Since ∥α∥ = ∞, there exists some
M⋆ such that

∑M⋆

m=1 α(m) ≥ η + 1. By Proposition 1 there
exist n⋆, ℓ⋆ ∈ N such that maxm∈1,...,M⋆ |αℓ⋆

n⋆(m)−α(m)| ≤
1

M⋆ leading to,
∑M⋆

m=1 α
ℓ⋆

n⋆(m) ≥ η. Let T ′
1 be large enough

so that Mt ≥ M⋆, nt ≥ n⋆, and ℓt ≥ ℓ⋆ for all t ≥ T ′
1.

Fix some ϵ∗ > 0. By Lemma 2 there exists some random
Nϵ∗ such that for all u ≥ Nϵ∗ with probability one we have
maxm∈1,...,M⋆ |α̂ℓ⋆

u,n⋆(m)− αℓ⋆

n⋆(m)| ≤ ϵ∗/2M⋆ so that

M⋆∑
m=1

α̂ℓ⋆

u,n⋆(X,m) ≥ η − ϵ∗/2. (49)

Since ϵt ↓ 0, there exists some T ′
2 such that for all t ≥ T ′

2 it
holds that

η − ϵ∗ + ϵt
√
η − ϵ∗ < η − ϵ∗/2. (50)

Let T ′
3 be large enough so that κt given by (11) is larger

that Nϵ∗ for all t ≥ T ′
3. Recalling that S is a countable dense

subset of [0,∞) we can find some t ≥ max{T ′
1, T

′
2, T

′
3} such

that st ∈ (η− 2ϵ∗, η− ϵ∗). With probability one it holds that,

st + ϵt
√
st < η − ϵ∗/2 (51)

≤
M⋆∑
m=1

α̂ℓ⋆

κt,n⋆(X,m) (52)

≤
Mt∑
m=1

α̂ℓt
κt,nt

(X,m) (53)

= θt(X) (54)

where (51) follows from (50), (52) follows from (49), and (53)
follows from the fact that t ≥ T ′

1 (and hence Mt ≥M⋆, nt ≥
n⋆, and ℓt ≥ ℓ⋆) together with the monotonicity of α̂ℓ

k,n(m).
Since the above holds for any η ∈ N, the result follows.

Proof of Theorem 4. First we show that

lim sup
t→∞

ξt(X) ≤ ∥α∥ µ− almost surely. (55)

This trivially holds when ∥α∥ = ∞. So, suppose that
∥α∥ < ∞. By an argument similar to that given in
the proof Theorem 3, whenever ut > ∥α∥, we have
Pr
(
θt(X) > ut + ϵt

√
ut
)
≤ δt. Since

∑
t≥1 δt < ∞, by the

Borel-Cantelli lemma, we have∑
t:ut>∥α∥

χ{θt(X) > ut + ϵt
√
ut} <∞, µ− almost surely.

Hence, with probability one, there exists a random time T1 ∈
N such that, for all t > T1,

θt(X) ≤ ut + ϵt
√
ut whenever ut > ∥α∥. (56)

In particular, let E := {s ∈ S ∩ (∥α∥ ,∞) : bT1+1(s) = 0},
and observe that |E| < ∞. Therefore, there exists some time
T2 > T1 such that, for every s ∈ E there exists t ∈ {T1 +
1, . . . , T2} with ut = s. As follows from (56), for all t ≥ T2,
with probability one we have bt(s) = 1 for all s > ∥α∥ and
(55) follows. The fact that

lim inf
t→∞

ξt(X) ≥ ∥α∥ , almost surely, (57)

for ∥α∥ < ∞ follows analogously. To see this, take any η <
∥α∥ < ∞ and define ϱ := ∥α∥ − η. As in the proof of
Theorem 3, there exists some s ∈ S ∩ (η, ∥α∥ − 7ϱ/8) and
a random time T ′

1 such that for all t ≥ T ′
1, with probability

one, we have

θt(X) > ut + ϵt
√
ut whenever ut ≤ s. (58)

The set E′ := {s ∈ S ∩ (η, ∥α∥ − 7ϱ/8) : bT ′
1+1(s) =

1} can only have finitely many elements, each of which will
eventually be visited; that is, we can find some T ′

2 > T ′
1 such

that for every s ∈ E′ there exists some t ∈ {T ′
1 + 1, . . . , T ′

2}
with ut = s. By (58) for all t ≥ T ′

2 with probability one it
holds that bt(s) = 0 for all s ∈ S ∩ (η, ∥α∥ − 7ϱ/8) and
(57) follows. Now suppose that ∥α∥ = ∞. By an argument
analogous to the above, for each η ∈ N and every ϵ∗ > 0 there
exists some s ∈ (η− 2ϵ∗, η− ϵ∗) and a random T ′′

1 ∈ N such
that for all t ≥ T ′′

1 with probability one we have

θt(X) > η − ϵ∗ ≥ ut + ϵt
√
ut whenever ut ≤ s. (59)

Again, by (59) and noting that the set E′′ := {s ∈ S ∩ (η −
2ϵ∗, η−ϵ∗) : bT ′′

1 +1(s) = 1} has finite cardinality, we can find
some T ′′

2 such that for all t ≥ T ′′
2 with probability one we have

bt(s) = 0 for all s ∈ S ∩(η−2ϵ∗, η−ϵ∗). Since this holds for
every η ∈ N and any ϵ∗ > 0, it follows that when ∥α∥ = ∞
we have lim inft→∞ ξt(X) ≥ ∞, µ − almost surely. This
completes the proof.

Proof of Lemma 3. Fix m, ℓ ∈ N, n > m ∈ N and some
j ∈ {1, . . . , n −m}. Define Cj

1(ℓ) :=
{
[A]j1 : A ∈ Dj,ℓ

}
and

Cn
j+m(ℓ) :=

{
[B]nj+m+1 : B ∈ Dj′,ℓ, j

′ := n−m− j
}
. Ob-

serve that σ(Cj
1(ℓ)) = Fj

1(ℓ) and that σ(Cn
j+m(ℓ)) = Fn

j+m(ℓ).
Moreover, Fj

1(ℓ) and Fn
j+m(ℓ) are atomic, with the elements

of the countable collections Cj
1(ℓ) and Cn

j+m(ℓ) as their atoms
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respectively. By Bradley [1, Vol. 1, Proposition 3.21] we can
write β(Fj

1(ℓ),F
n
j+m(ℓ)) as,

1

2

∑
U∈Cj

1(ℓ)

∑
V ∈Cn

j+m(ℓ)

|µ(U ∩ V )− µ(U)µ(V )| = βℓ
n,j(m).

Proof sketch of Proposition 5. The result follows in much
the same way as in Proposition 3, by observing that since
β(m) ≥ α(m), m ∈ N, as follows from Lemma 2 for all
D ∈ Dn,ℓ, n, ℓ, t ∈ N and every ϵ > 0 we have,

Pr (|µt(X, D)− µ([D]n1 )| ≥ ϵ) ≤ 4 ∥β∥
tϵ2

.

Thus, for a fixed ϵ > 0 and t, n ∈ N we can deduce that
Pr(Ωt,n) ≥ 1− (22

2nℓ+1+2mℓ+1+2)∥β∥
tϵ2 where

Ωt,n :=

{
max

D∈Dn,ℓ

|µt(X, D)− µ([D]n1 )| ≤ ϵ/(22
mℓ+22nℓ

)

}
.

Next, as in the proof of Proposition 3 we can obtain

Pr(|β̂ℓ
t,n(X,m)− βℓ

n(m)| ≥ ϵ) ≤ 2Pr(Ωc
t,n)

≤ (22
2nℓ+1+2mℓ+1+2)

∥β∥
tϵ2

,

which together with a union bound gives the second concen-
tration bound as well.

Proof of Theorem 7. Consider a rate function γ : N → [0, 1]
and denote by Rα

γ the class of processes with γ as rate
function of their α-mixing coefficients. Consider a process
measure µ ∈ C α with corresponding sequence of random
variables X. First, observe that gt is Ft-measurable. To prove
that gt is consistent in the sense of (21), we proceed as
follows. Consider a process X with process distribution µ. Let
Et := {∃m ∈ {1, . . . ,Mt} such that α̂t(X,m) > γ(m)+ϵt}.
If µ ∈ C α ∩ Rα

γ , we have

Pr(Et) ≤
Mt∑
m=1

Pr(α̂t(X,m) > γ(m) + ϵt)

≤
Mt∑
m=1

Pr(α̂t(X,m) > α(m) + ϵt) (60)

≤
Mt∑
m=1

Pr(|α̂t(X,m)− αℓt
nt
(m)| > ϵt) (61)

≤ ∥α∥ δt, (62)

where (60) follows from the fact that µ ∈ Rα
γ , (61) from

observing that αℓt
nt
(m) ≤ α(m), m ∈ N, and (62) follows

from Proposition 3. Noting that ∥α∥ <∞ and δt is summable,
we have

∑
t∈N Pr(Et) ≤ ∥α∥

∑
t∈N δt = ∥α∥ δ < ∞.

Therefore, Pr(
⋂∞

t=1

⋃∞
t′=tEt′) = 0 by the Borel-Cantelli

Lemma. This means that there exists some random τ (which
depends on the sample-path) such that for all t ≥ τ we have
gt(X) = +1, µ− almost surely. On the other hand, suppose
µ ∈ C α \ Rα

γ and observe that there exists some m∗ ∈ N
and some δ∗ ∈ (0, 1] such that α(m∗) − γ(m∗) = δ∗. Let
Ẽt := {∀m ∈ {1, . . . ,Mt} such that α̂t(m) ≤ γ(m) + ϵt}.
Recalling that ⟨ℓt⟩ and ⟨nt⟩ are increasing sequences, by

Proposition 1 there exists some T1 such that for all t ≥ T1 we
have

|αℓt
nt
(m∗)− α(m∗)| ≤ δ∗/2. (63)

Since ⟨Mt⟩ is an increasing sequence, we can find some T2 ∈
N such that m∗ ≤ Mt for all t ≥ T2. Moreover, since ⟨ϵt⟩
decreases with t there exists some T3 such that ϵt ≤ δ∗/4 for
all t ≥ T3. Let T ∗ := max{T1, T2, T3}. For t ≥ T ∗ we have,

Pr(Ẽt) ≤ Pr(α̂t(X,m
∗) ≤ γ(m∗) + ϵt)

≤ Pr(α̂t(X,m
∗) ≤ γ(m∗) + δ∗/2− ϵt) (64)

≤ Pr(α̂t(X,m
∗)− αℓt

nt
(m∗) ≤ −ϵt) (65)

≤ Pr(|α̂t(X,m
∗)− αℓt

nt
(m∗)| ≥ ϵt) (66)

≤ ∥α∥ δt, (67)

where (64) follows from the fact that ϵt ≤ δ∗/4 for t ≥ T3 so
that δ∗/2 − ϵt ≥ ϵt, (65) follows from (63) and (67) follows
from Proposition 3 and the choice of τt. In much the same
way as above, we have

∑∞
t=T∗ Pr(Ẽt) ≤ ∥α∥ δ <∞ and by

the Borel-Cantelli Lemma we obtain Pr(
⋂∞

t=1

⋃∞
t′=t Ẽt′) ≤

Pr(∩∞
t=T∗ ∪∞

t′=t Ẽt′) = 0. Thus, there is some random T such
that for all t ≥ T we have

gt(X) = −1, µ− almost surely.

Proof sketch of Proposition 4. Fix m, ℓ ∈ N and n > m. Ob-
serve that for each j ∈ {1, . . . , n−m} we have Fj

1(ℓ) ⊆ Fj
1(ℓ+

1), ℓ ∈ N and Fn
j+m(ℓ) ⊆ Fn+1

j+m(ℓ + 1), n, ℓ ∈ N are each
a sequence of σ-algebras with

∨∞
ℓ Fj

1(ℓ) = σ(X1, . . . , Xj)
and

∨∞
n,ℓ F

n
j+m(ℓ) = σ({Xt : t ≥ j + m + 1}). Therefore,

by Bradley [1, Vol. 1, Proposition 3.18] we can deduce that
limn,ℓ→∞ β(Fj

1(ℓ),F
n
j+m(ℓ)) is given by

β(σ({Xt : 1 ≤ t ≤ j}), σ({Xt : t ≥ j +m+ 1})).

As in Lemma 1, it is straightforward to check that for each
m ∈ N we have

sup
n,ℓ

max
j∈{1,...,n−m}

βℓ
n,j(m) = sup

j∈N
sup

n≥j+m+1
sup
ℓ
βℓ
n,j(m).

(68)

Thus, analogously to the proof of Lemma 1, by (68) and
Lemma 3 we obtain limn,ℓ→∞ βℓ

n(m) = β(m).
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